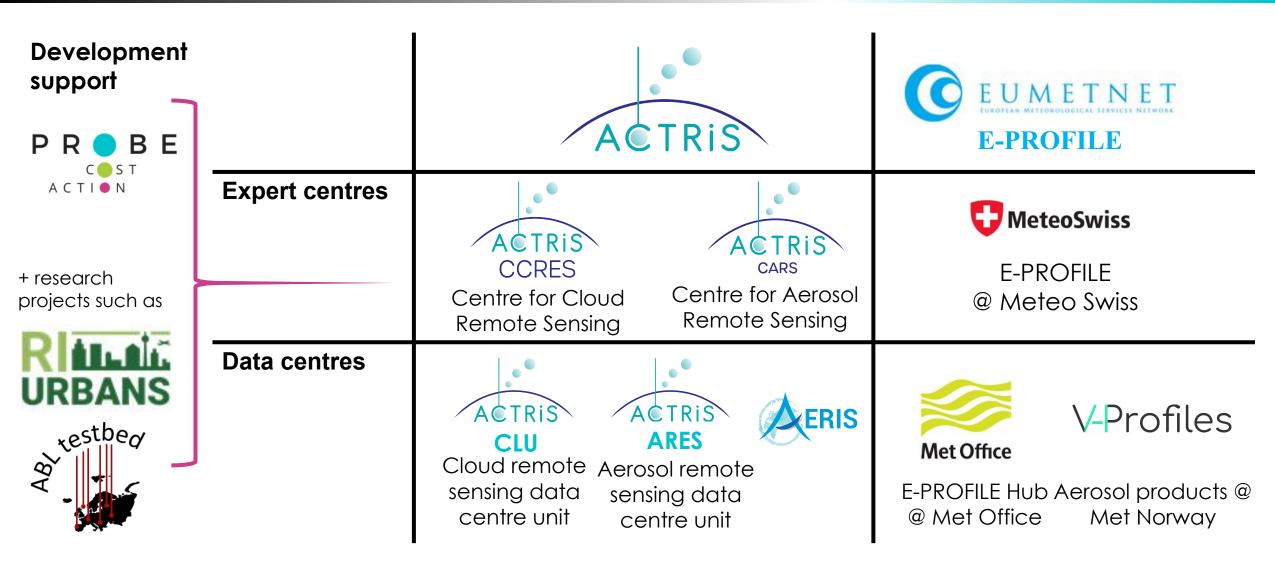

Harmonised processing of ALC data

Updates from collaborations with ACTRIS and E-PROFILE

BE


Agenda				
09:30	ALC processing overview	Simone Kotthaus		
09:45	Lufft CHM15k overlap model	Melania Van Hove		
10:00	Vaisala CL51 & CL61 overlap	Melania Van Hove		
10:05	Instrument background	Frank Wagner		
10:20	Calibration status	Ina Mattis, Melania Van Hove, Alexander Geiss		
10:40	Rayleigh calibration seasonal cycle	Joelle Buxmann		
11:00	Open discussion	Ina Mattis		

Important actors

? R 🔵 B E

C S T ACTION

Processing chain

Step 1: Data collection & formatting

Step 2: Corrections & calibrations

Step 3: Advanced products

Processing chain

Step 1: Data collection & formatting

Step 2: Corrections & calibrations

Step 3: Advanced products

Step 1: data collection + formatting

- Numerous models of automatic lidars and ceilometers (ALC)
- Operation of ALC should follow standard operating procedures (SOPs) currently formulated

Collection of 'raw' data & standardisation

- Communicate SOPs and data acquisition protocols to operators
- System for station management (e.g. WIGOS ID in WMO OSCAR)
- Robust data transfer procedures
 - At times not easily matched with instrument output format, (e.g. frequency of file creation)
 - Procedures for missing/duplicated files etc
- Secure and robust data storage
- Data format standardisation for range of input formats ("raw2L1")
- Monitoring of firmware versions and hardware
- Quality control and alerts (missing/faulty data etc)
- Housekeeping data

Standard operating procedures

ACTRIS CCRES SOP for ALC: <u>https://www.actris.eu/sites/default/files/inline-files/CCRES%20SOPs%20-%20ALCs.pdf</u>

PROBE SOPs: Vaisala CL51 (login to user space):

https://www.probe-cost.eu/images/pdfs/SOPS/PROBE WG4 ALC operation guidelines VaisalaCL51 20211007.pdf

Vaisala CL31 (login to user space):

https://www.probe-cost.eu/images/pdfs/SOPS/PROBE WG4 ALC operation guidelines VaisalaCL31 20210915.pdf

Vaisala CL61 (login to user space):

Lufft CHM15k (login to user space):

BE

A C T I 🔴 N

- Tool to generate a **common file format (NetCDF)** from raw data of different types of ALC
- Developed by Marc-Antoine Drouin (SIRTA) since COST Action Toprof
- Operationally used by E-PROFILE
- Analysis tools of ACTRIS ALC testbeds (DWD, LMU) (under development) also use raw2L1

New instruments bring


- new information (e.g. depolarization, multiple channels)
- new variables (e.g. housekeeping data)
- \rightarrow Need to discuss further developments of the tool among developers (and users)
 - Naming of new variables
 - Introduction of new channel dimension?
 - Homogenization of time units
 - Moving source code into public repository / package server

Virtual meeting June 7, 10:00 - 12:00 CEST

*Contact Ina Mattis if you would like to attend

Status of data collection

- Procedures need to be available to process campaign data locally
- Streamlining of monitoring (missing data, housekeeping data, ...)

How to collect ALC data for urban networks?

ACTRIS-CLU data centre?

Capacity for diverse network?

ACTRIS-ARES

Suitable for ALC?

E-PROFILE?

• Establish partnership with ACTRIS?

Processing chain

Step 1: Data collection & formatting

Step 2: Corrections & calibrations

Step 3: Advanced products

P R B E c s t a c t i N

- Sensor-specific corrections (instrument background, overlap)
- Absolute calibration to attenuated backscatter
- Both required past time series and near real-time solutions

Calibration and correction, partly implemented at						
ACTRIS-CLU:	E-PROFILE:	AERIS-ESPRI				
ALC at official	Diverse European	ABL testbed sites				
CCRES stations	ALC network	(~26 sensors)				

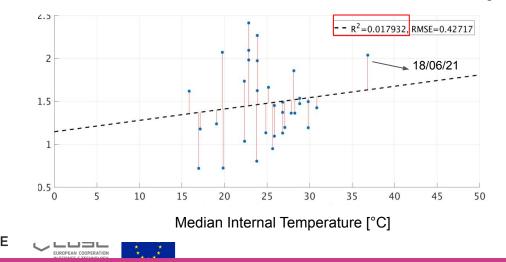
Status of corrections

	Overlap	Near-range artefacts	background	Water vapour	Calibration
Lufft CHM15k	T-model				Rayleigh
Vaisala CL31		 Climatology 	 Climatology 	To be discussed	Liquid cloud
Vaisala CL51	 Climatology method 	method	methodconemeasurement		
Vaisala CL61	Under investigation	To be checked	Not needed	Necessary?	Rayleigh
Cimel CE376	?	Ś	Ś		Ś
Droplet MT miniMPL	Ś	Ś	Ś		Ś
Campbell SkyVUE PRO	Ś	Ś	Ś	Ś	Ś
Raymetrics	Ś	Ś	Ś		Ś

С — S Т А С Т I • N

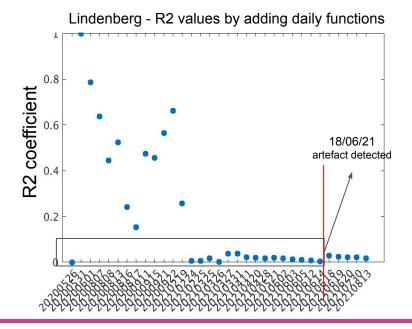
Agenda				
09:30	ALC processing overview	Simone Kotthaus		
09:45	Lufft CHM15k overlap model	Melania Van Hove		
10:00	Vaisala CL51 & CL61 overlap	Melania Van Hove		
10:05	Instrument background	Frank Wagner		
10:20	Calibration status	Ina Mattis, Melania Van Hove, Alexander Geiss		
10:40	Rayleigh calibration seasonal cycle	Joelle Buxmann		
11:00	Open discussion	Ina Mattis		

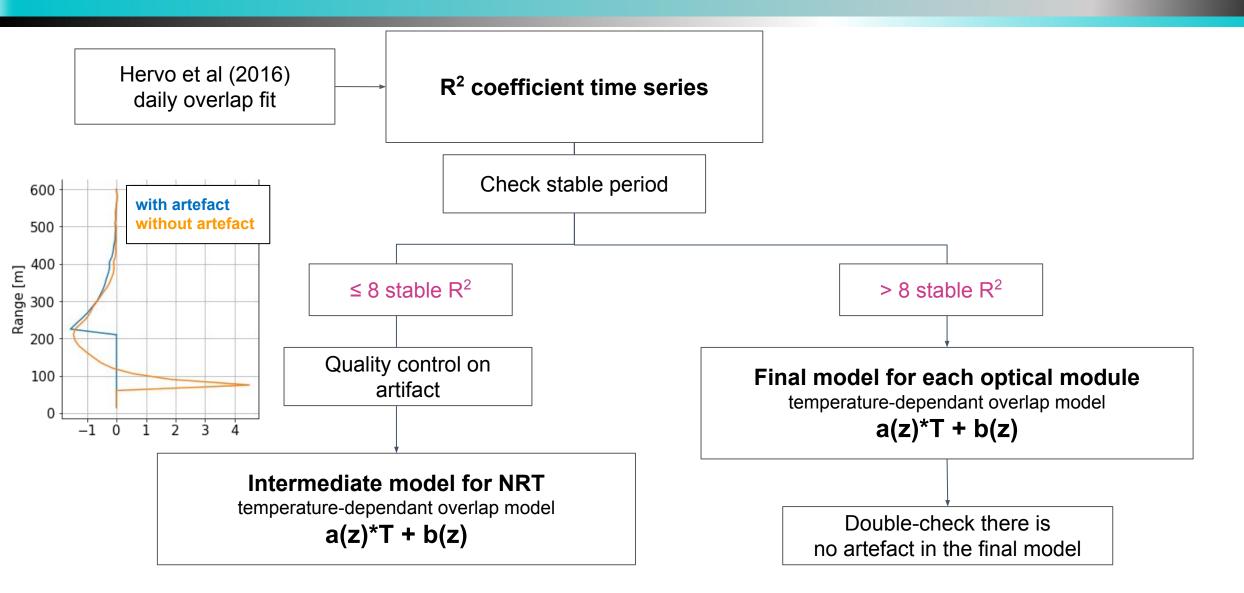
CHM15k Optical overlap


Temperature-dependent overlap

- Production of daily functions (vertical profiles)
 - \rightarrow one final single model based on daily functions **selected manually**
- 1 laser optical module = 1 overlap correction model

Method to select daily functions automatically


- 1) Quantification of the impact of each daily function: Δ = mean relative difference between corrected and un-corrected signal
- 2) Regression Δ vs mean internal temperature \rightarrow correlation coefficient R²

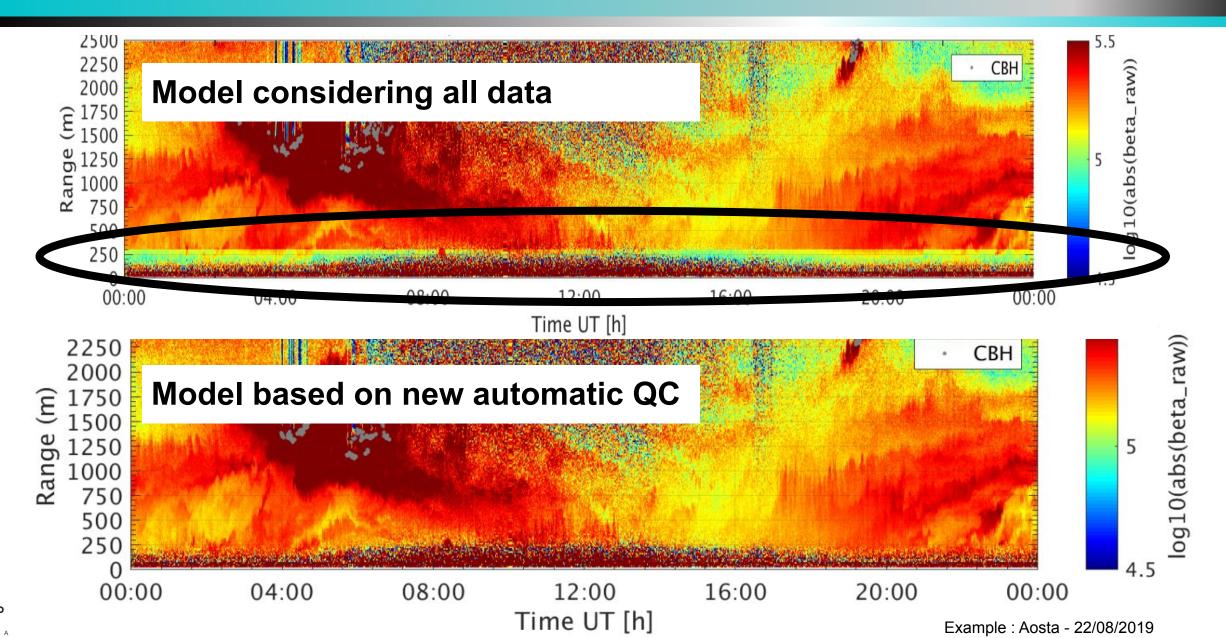

Norm of relative difference between corrected and uncorrected signal

 Time series of R², adding daily functions chronologically B

- 4) \mathbf{R}^2 become stable after a number of days
- 5) Stop when \mathbf{R}^2 becomes unstable again

Automatic overlap model creation

 $\mathbf{P} \mathbf{R}$


ΒE

C 🔵 S T

CHM15k overlap model

CHM15k overlap model - Conclusion

- Results :
 - Study based on 19 lasers ABL Testbed
 - 3 improved with detection of raise in R2 coeff
 - 2 where artifacts quality control works (small amount of stable R2)
 - 13 not impacted (all daily functions kept)
 - 1 model not satisfying using R2 method (Magurele-Rado)
 - => >90% satisfying models produced
 - R2 coeff and artifact detection show promising result as indicators of the quality of the model but :

BE

- Not perfect (improvement for 3 out of 4 lasers)
- Can reduce the amount of daily functions
- Current state :
 - Original code in Matlab : more automatic
 - Translation in Python 3 (Martin Osborne (Met Office) + E-PROFILE):
 - promising results for creation of daily functions
 - Expected by end of June 2023
- For future :
 - study artifact detection in daily functions instead of final overlap model
 - thresholds of stability definition are empirical, how to define them?

CL51 and CL61 Corrections

CL51 overlap correction bias

- Systematic overestimation < 500 m
- Not seen by CL31 at same site
- Caused by generic optical overlap correction
- ABL testbed developing
 instrument-specific correction

08:58

13:24

Time

17:51

2010.0

1760.0

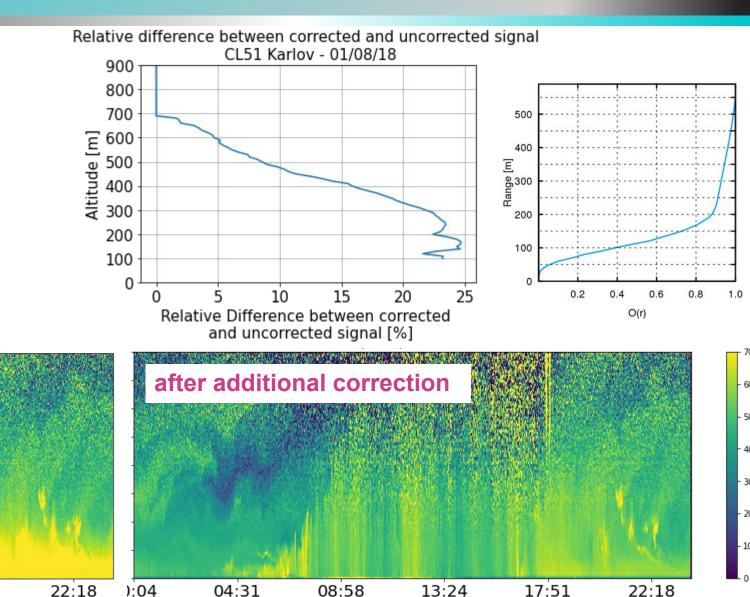
1510.0 <u>E</u> 1260.0

1010.0

760.0

510.0

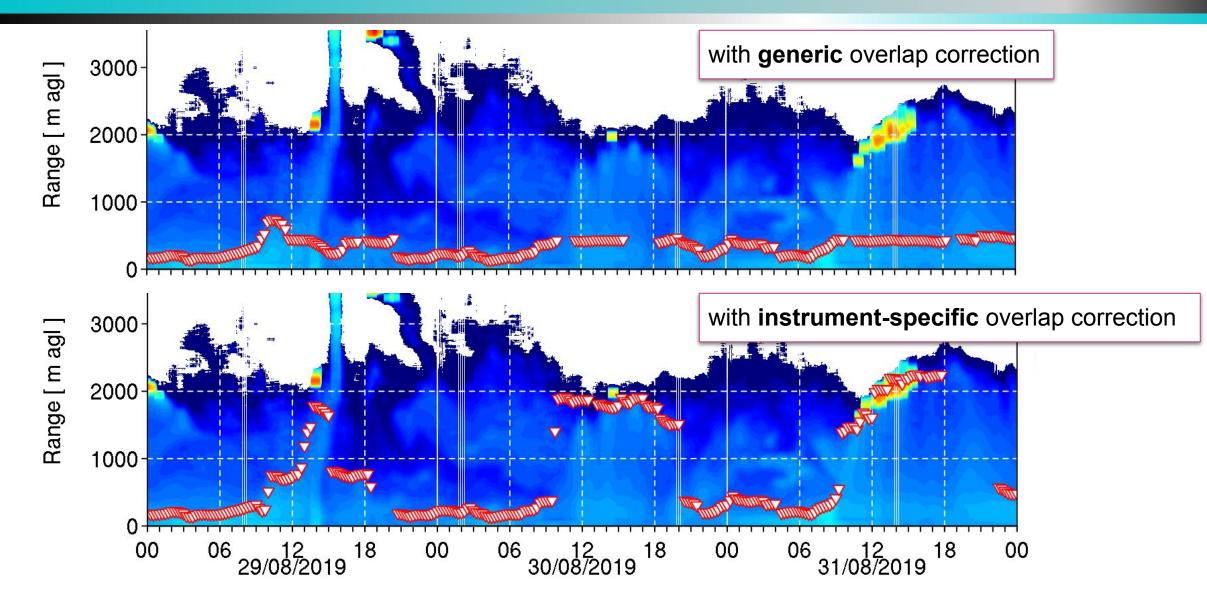
260.0


10.0

00:04

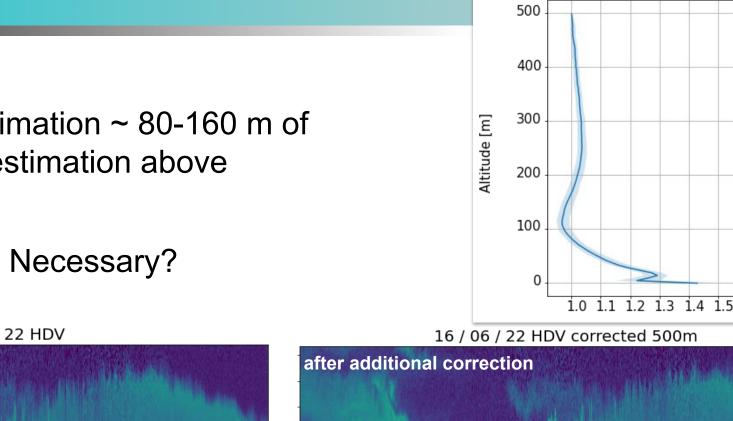
Altitude

raw

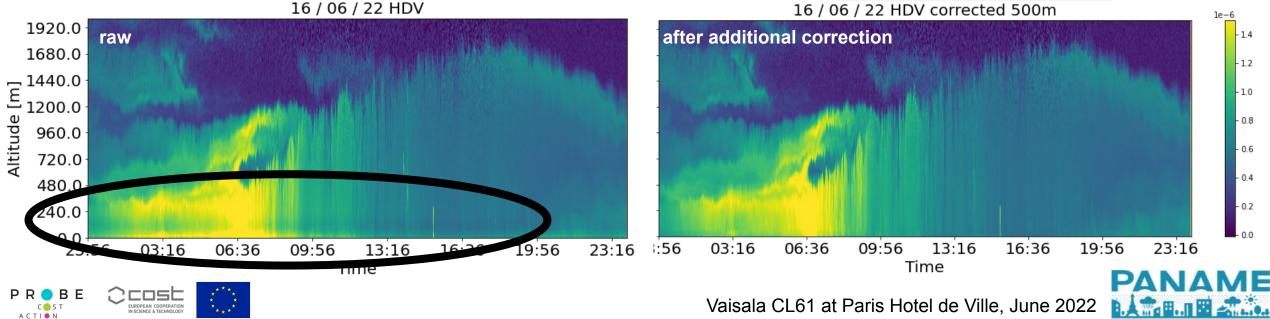

04:31

Time

Impact on layer detection



C S T EUROPEAN COOPERATION

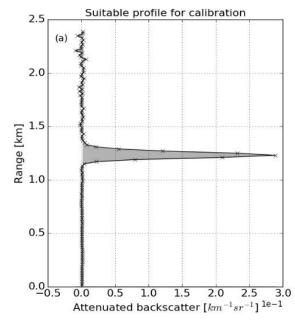

CL61 overlap bias

- Systematic underestimation ~ 80-160 m of about 3 % and overestimation above
- Instrument-specific
- Correction possible? Necessary?

BE

P

Calibration

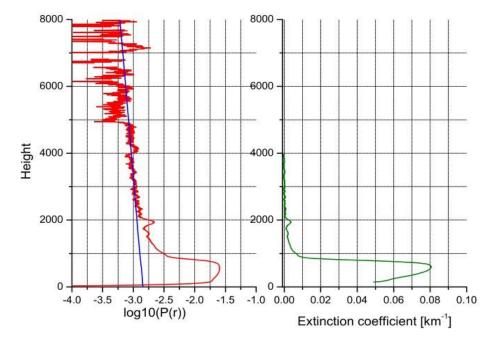


Absolute calibration methods

<u>CL31, CL51</u>

Liquid cloud method

- Reference: liquid clouds (lidar ratio 18.8 sr)
- Careful if signal saturates in thick clouds (photon counting sensors)
- Careful selection of profiles is key

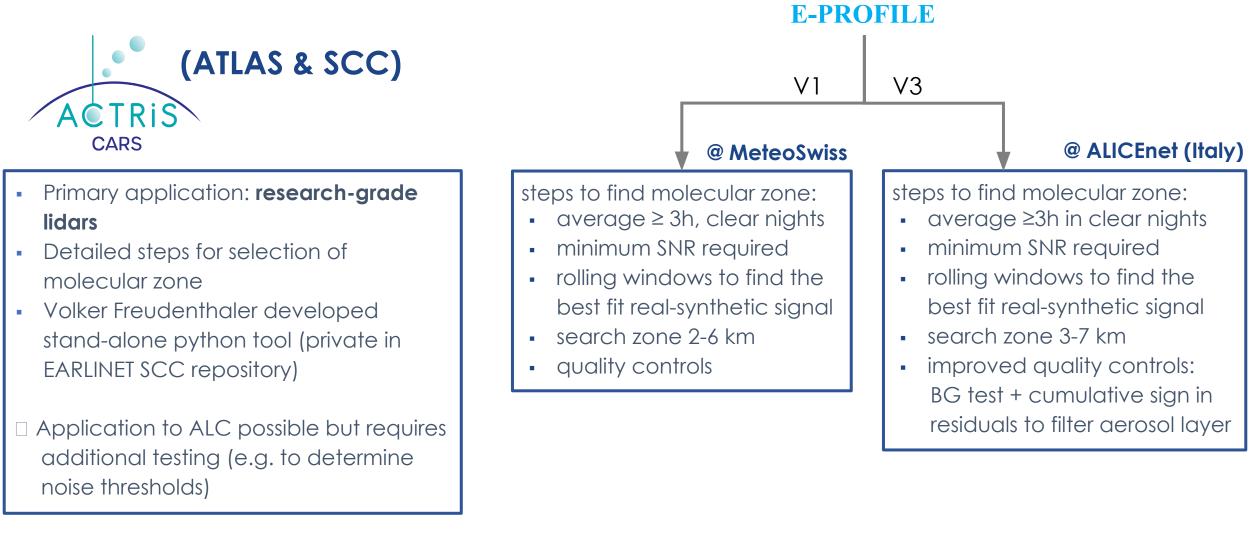


(Hopkin et al. 2019)

<u>CHM15k, CL61</u>

Rayleigh method

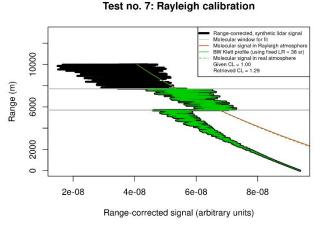
- Reference: Rayleigh scattering profile in upper atmosphere
- Sensitivity to molecular scattering required
- Careful selection of profiles is key


(Wiegner and Geiß 2012)

- Original code from Emma Hopkins (University of Reading / Met Office) in python 2
- Then used by Elliott Warren (University of Reading / Met Office)
- E-PROFILE versions of the code (python 2 and 3) changed by several users
 - \circ $\,$ Now some conflicts with versioning
 - Significantly different results between original code and E-PROFILE versions
 - Plan: use University of Reading code as a basis
- GitHub repositories available :
 - E-PROFILE (private) containing cloud calibration codes in python 2 and 3
 - Elliott Warren (private) containing "Emma's original script for LUMO ceilometers"

Rayleigh calibration implementations

BE



Seasonal cycle CHm15k Rayleigh calibration: instrument or atmosphere?

PROBE research study by Joelle Buxmann (Met Office) with Ina Mattis (DWD), Henri Diemoz (ARPA Aosta), Rolf Ruefenacht (Meteo Swiss), Francesca Barnaba (ISAC-CNR), Annachiara Bellini (ISAC-CNR), Martin Osborne (Met Office)

1. Generate synthetic profiles to show theoretical feasibility

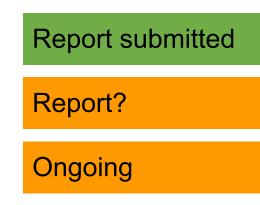
- Synthetic profiles show that even very small amounts of aerosol (AOD~0.01) can sufficiently change cal. constant
- Additional influenced by boundary layer aerosols

2. Look at the long-term seasonal variation-comparison between the calibration of the lidar (example Nottingham)

- no clear correlation with lidar constant directly
- Aerosol layers can be detected by the Raymetrics lidar within the calibration window of e-profile CHM15K calibration
- □ those aerosol layers will artificially increase the calibration constant

Discussion

Virtual mobility and STSM


Recent VMG

- Retrievals of aerosol extinction & mass concentration profiles from Automated Lidars (Annachiara Bellini, CNR-ISAC)
- Investigating the seasonal fluctuations of the CHM15K Ceilometer calibration constant (Joelle Buxmann, Met Office)
- CHM15k optical overlap model (Martin Osborne, Met Office)

Future topics

Cost

- Calibration: (Alexander Geiss, Frank Wagner)
 - Rayleigh calibration
 - Rayleigh seasonal cycle (with Joelle, Henri, Rolf, ...)
 - Cloud calibration
- Instrument background cone
- Evaluation of depolarization profile against reference measurements (Ina Mattis, Daniel Fenner, Dana, Alkistis - go with CIMEL to another site?)
- Summary of codes and repositories
- SOP updates, compiling existing documents (ACTRIS, E-PROFILE, PROBE, Cloudnet...)

Virtual mobility and STSM

Future topics: PROBE grant period until October 2023

- Testing the overlap model at HPB testbed site
- Calibration: (Alexander Geiss, Frank Wagner)
 - Rayleigh calibration
 - Rayleigh seasonal cycle (with Joelle, Henri, Rolf, ...)
 - Cloud calibration Jaume Ruiz de Morales (University of Girona) VMG or STSM

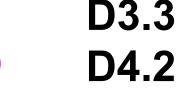
BE

- Instrument background cone measurements
 - Frank Wagner, Daniel Fenner, ...
- Evaluation of depolarization profile against reference obs \rightarrow CL61 meeting (07/07/2023)
 - Ina Mattis
 - Comparison CL61 to Raymetrics at MetOffice
 - Daniel Fenner, Dana Looschelders Uni Freiburg VMG
 - Alkistis go with CIMEL to another site? Maybe ATMOS-ACCESS in 2024?
- Summary of codes and repositories
- SOP updates
- compiling existing documents (ACTRIS, E-PROFILE, PROBE, Cloudnet...)

Summary

Proposed activities

 SOPS: General updates (Simone) On the use of the cone(s) and Lufft telecover (Frank, Ina) On interpretation of Lufft overlap files (Ina) 	D4.1
 Raw2L1 Harmonization of dovelopments > Meeting June 7 	
 Harmonization of developments -> Meeting June 7 	D3.1
Overlap	
 Lufft CHM15k Overlap model – testing new Python version (E-PROFILE?) 	D3.3
 Correction Vaisala CL51 – new method to be tested with more lasers 	
 Assessment of CL61 overlap uncertainty (using cone?) (Frank Wagner, Daniel Fenner) Testing overlap correction methods at CABS testhod 	D4.2
 Testing overlap correction methods at CARS testbed 	
 Instrument background 	
 Comparison to climatology assessment (Simone) 	D3.3
 CL61, CHM8k, CL51 (Frank Wagner, Daniel Fenner, …) 	D4.2
 How to apply background correction? 	U4.2


P R 🔵 B E

С — S Т А С Т I **—** N

Proposed activities

- Calibration:
 - Rayleigh calibration (Alexander Geiss)
 - Rayleigh seasonal cycle (Alexander, Joelle, Henri, Rolf, ...)
 - Cloud calibration Alexander with Jaume Ruiz de Morales (University of Girona) VMG or STSM?
- Evaluation of depolarization profile against reference obs \rightarrow CL61 meeting (07/07/2023)
 - Ina Mattis
 - Comparison CL61 to Raymetrics at MetOffice
 - Daniel Fenner, Dana Looschelders Uni Freiburg VMG
 - Alkistis go with CIMEL to another site? Maybe ATMOS-ACCESS in 2024?
- Compiling existing documents (ACTRIS, E-PROFILE, PROBE, Cloudnet...)
- Summary of codes and repositories

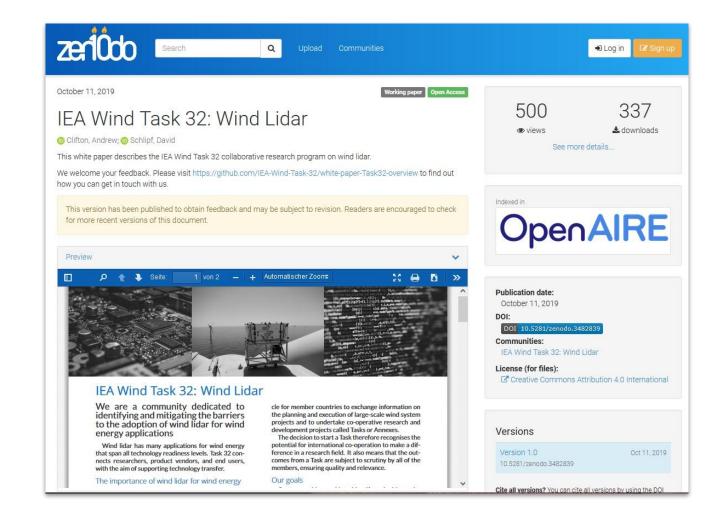
D4.3

 \mathbf{P} R

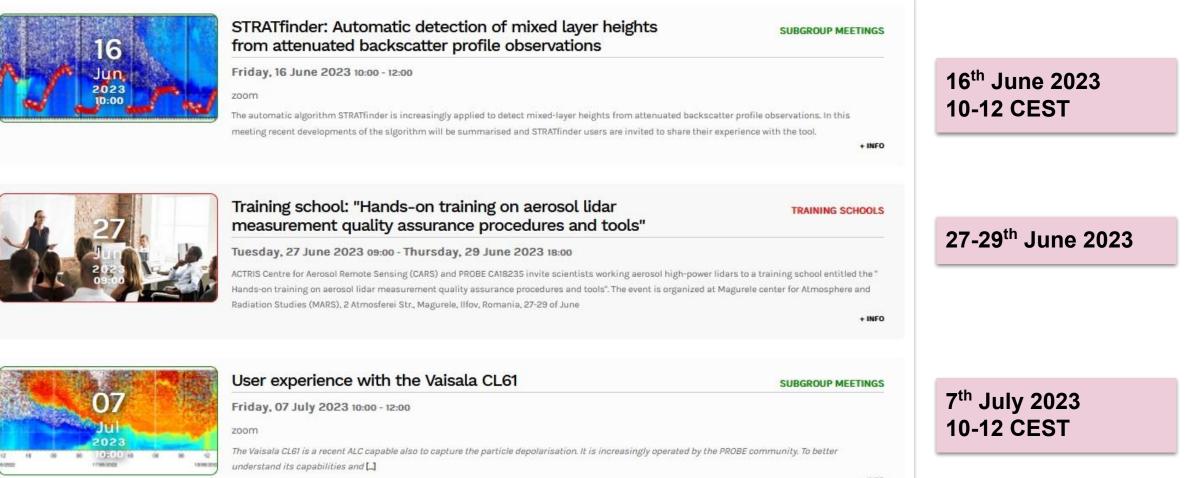
BE

Code repositories

P R B E c s t a c t i • N


- Where are all the relevant codes?
 - CHM15k Overlap correction
 - Public Matlab code (Melania): https://gitlab.in2p3.fr/ipsl/sirta/chm15k/overlap_corr
 - Public Python code (Martin) https://github.com/martin-obs/OVERLAP_PROBE_EPROFILE
 - o raw2L1
 - Public Python code (Marc-Antoine) https://gitlab.in2p3.fr/ipsl/sirta/raw2l1
 - Calibration codes
 - Cloud calibration
 - E-PROFILE (private) containing cloud calibration codes in python 2 and 3
 - Elliott Warren (private) containing "Emma's original script for LUMO ceilometers"
 - Rayleigh calibration
 - EARLINET (private mercurial) -> ask giuseppe.damico@imaa.cnr.it
 - Meteoswiss -> ask Rolf Rüfenacht
 - ALICENET -> ask
- A lot of ACTRIS code in Github (backup, automatic testing, ...) => shall we all move there?

Documents


- ACTRIS documents mainly in intranet :(
- E-PROFILE
 - Glossary
 - File Format description document
 - SOPs
- PROBE documents currently on website
 - Plan to put documents on zenodo (versioning, DOI, ...)
 - See e.g. zenodo page from <u>IEA Task 32</u>

Upcoming events

Raw2L1 developer meeting June 7, 10:00 - 12:00 CEST (contact Ina Mattis if would like to attend)

+ INFO