

# ACTRIS CCRES

Calibration transfer experiment JOYCE Observatory, Germany

F. Toledo, S. Jorquera, L. Pfitzenmaier, B. Pospichal, J-P. Vinson, N. Feuillard P. Delville, O. Diakhate, F. Lapouge

CCRES Workshop, online – June 11<sup>th</sup>, 2024

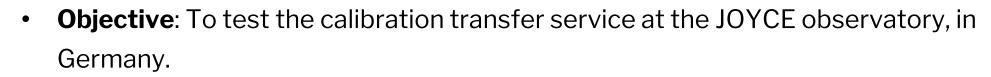


This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 871115

## **Motivation**

- Cloud radar absolute calibration is complex
  - Requires specific setups for each radar model
  - Can be time-intensive for the operators
  - Difficult to implement uniformly over a network setting
- Calibration Transfer can alleviate this problem
  - Works between radars of different models
  - Uncertainty in the calibration transfer comparable to other absolute methods
  - Takes time for profile sampling, but requires very little intervention from the




## Calibration strategy

- Calibrate a reference radar with precision using an absolute method
- Move the reference radar to transfer its calibration to other instruments in the network
- Questions
  - How reliable is the reference instrument calibration after travel
  - What are the resources needed when applying this procedure **operationally**





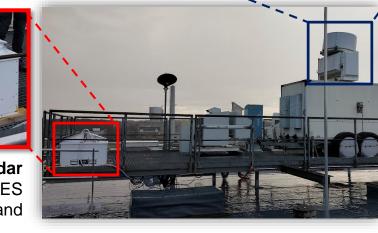
## The campaign



- Calibration transfer to a MIRA radar
  - Ka Band
  - Follows ACTRIS guidelines, data available in Cloudnet
- Reference radar:
  - BASTA-Mini CCRES from the SIRTA observatory, in France.
    - W band
    - Pre and post-campaign calibration done using a reference corner reflector
    - Calibration uncertainty of 0.8 dB

## **Experimental setup**

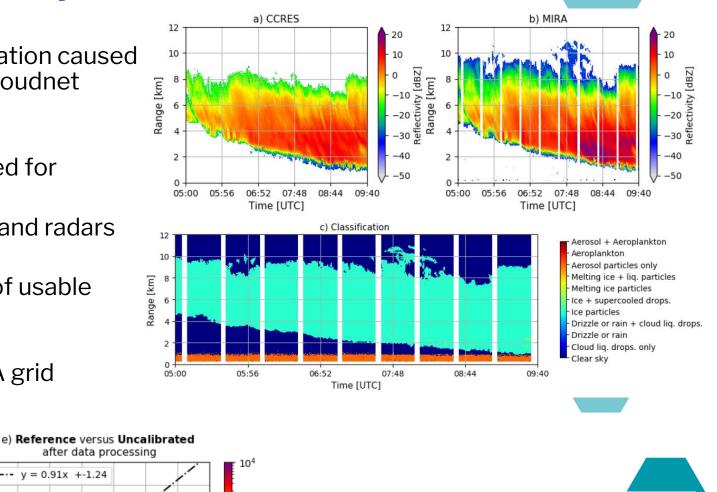
- One day for the setup of the reference radar, need a minimum of two people (radar operator and site expert)
- Max. distance of 25 meters between BASTA-Mini and its control electronics (PC and power supply).
  - The PC and power supply must be indoors.
  - Internet access is recommended for surveillance.
- Distance between the radars was less than 10 meters, but this distance can be greater. Calib. transfers within ~50 m of separation have been done before.
- Cloudnet data used for MIRA
  - 36 meters and 3 seconds resolution
  - Wind scans every 30 minutes
  - Calibrated data used for BASTA-Mini CCRES
    - 25 meters and 3 seconds resolution
    - Vertically pointing
    - Periodic radome blower

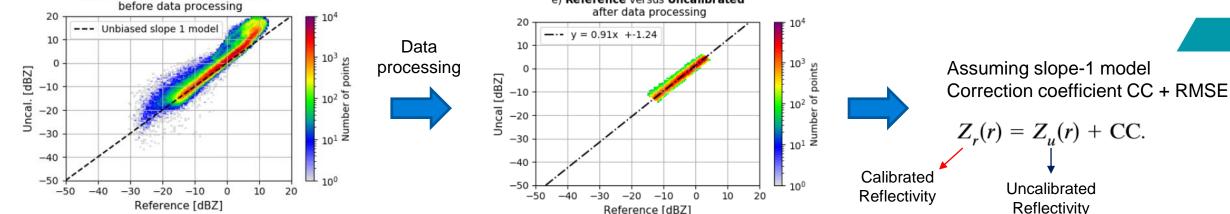





**Joyce Obs. Radar** MIRA Ka Band




Reference Radar BASTA-Mini CCRES W Band




## **Data analysis**

- Hydrometeor clasification and signal attenuation caused by atmospheric gasses are obtained from Cloudnet products
- Only periods with pure ice clouds are selected for comparison
  - Liquid water attenuates the Ka and W band radars differently
  - Puts a strong constrain on the amount of usable data
- Samples are interpolated to match the MIRA grid

d) Reference versus Uncalibrated

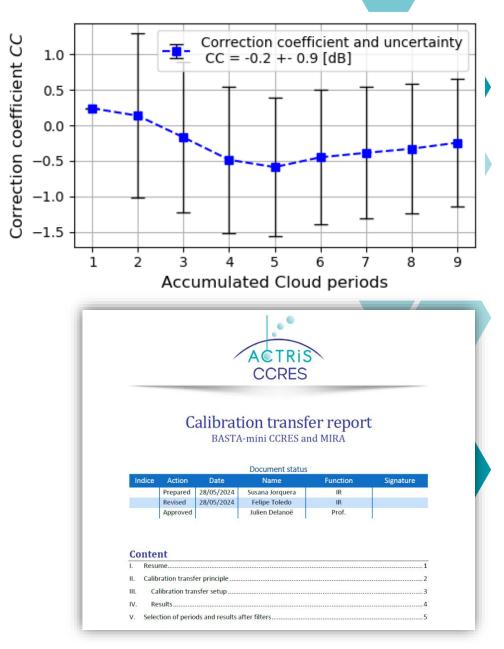




## Results

- After several comparison periods are collected, their results are accumulated to estimate the final CC and its uncertainty
- A calibration transfer report is prepared with information about the experiment, relevant data and the main results

#### Table 2 : Correction coefficient result.


| Reference  | Reference radar         | Correction coefficient | Correction coefficient |
|------------|-------------------------|------------------------|------------------------|
| radar Mode | calibration uncertainty | (Reference - MIRA)     | uncertainty            |
| 25m        | 0.8 dB                  | - 0.2 dB               | 0.9 dB                 |

### **Time constrains:**

- During the JOYCE campaign, 9 suitable cloud periods are found during ~ 12 weeks of sampling in winter
  - Accurate results are obtained from the third period
  - At least 4 weeks of sampling would be needed for calibration transfer between different band radars
    - Double than for the same-band case
    - Probably very season dependent

#### Calibration transfer based on the methodology published in:

Jorquera, S., and Coauthors, 2023: Calibration Transfer Methodology for Cloud Radars Based on Ice Cloud Observations. J. Atmos. Oceanic Technol., **40**, 773–788, https://doi.org/10.1175/JTECH-D-22-0087.1.

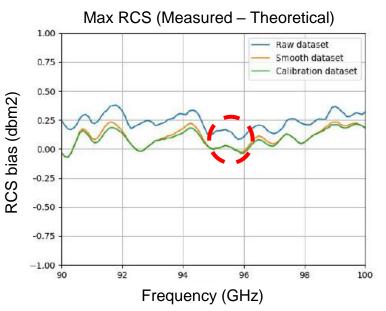


## Verification of the reference radar calibration



BASTA-Mini CCRES aiming at a 10 cm Corner Reflector 376 m away

**Reflector on top of a fiberglass mast** 


ACTRIS

**CCRES** 



The reflector has been characterized in an Anechoic chamber.

## RCS within 0.3 dB from the theoretical value



## Verification of the reference radar calibration



- Before the Joyce campaign:
  - CZ = -175.4 +- 0.8 dB @12m5 mode
- After the Joyce campaign:  $C7 = 175.6 \pm 0.9 dB = 12m5 r$ 
  - CZ = -175.6 +- 0.8 dB @12m5 mode
- Difference of ~0.2 dB for the 12.5 m mode, well under the uncertainty of 0.8 dB
- Same result for the 25 m mode, used for the calibration transfer
- The radar remained calibrated during the whole period

## **Summary and lessons**

- The reference radar calibration is stable when the radar is handled with normal care.
  - Calibration transfer to other sites is possible
- Planning to do before the campaign:
  - Selecting a site for the radar
  - Checking distances to an available shelter (less than 25 m)
  - Preparation of the material for transport takes about one day
- The experimental setup requires a minimum of two people: a radar operator and a site expert. It takes:
  - One full day for the setup
  - One full day for the removal
  - Transport time for the operator
- The minimum recommended co-located sampling time for same-band radars is of 2 to 4 weeks.
- This time can be significantly longer when comparing different-band radars.
  - The frequency of pure ice clouds determines the time needed for different-band calibration transfer.
- Data processing and preparation of the report takes 2-3 days if the NF provides CloudNet data files. Requires a calibration expert or a trained operator.

# Outlook

- Possible calibration transfer campaign at Lindenberg this fall.
- Seasonality of Ice-Clouds should be observed when planning calibration transfer campaigns between different-band radars
- Validation of the Calibration Transfer Report format for official use in future campaigns
- Use this information to evaluate and plan the application of calibration transfer in the ACTRIS network.







Thank you

CCRES Workshop, online – June 11th, 2024