

# ACTRIS CCRES **Cloudnet deficiencies caused by presence of** targets below first range gate Hannes Griesche

Leibniz Institute for Tropospheric Research, Leipzig, Germany





CCRES Workshop, online – June 11th, 2024



This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 871115

#### **Lowest-level clouds can stay under the radar**





Griesche et al., ACP, 2020

#### Lowest-level clouds can stay under the radar



# ...also in mid-lats: Eriswil (Switzerland) 2024

Aerosols & insects

Melting & droplets

Insects

Aerosols

Melting ice

Droplets

10-

10-4

 $10^{-1}$ 

Έ kg

lce

16:00

16:00

20:00

20:00

Ice & droplets

Drizzle & droplets Drizzle or rain



CRES

#### Complete lidar signal attenuation by lowest-level clouds in Palaiseau (France )

Palaiseau 13 January 2024



### **Complete lidar signal attenuation by lowest-level clouds**

- Lidar beam attenuated below lowest Cloudnet range gate
- Clouds may be detected by cloud radar
  - → No cloud identified
    - → No cloud properties derived
  - → Cloud detected by cloud radar: pure ice cloud
    - → No liquid cloud properties derived



#### Palaiseau 13 January 2024





#### **Detection of low-level stratus clouds: lidar near field**



#### **Model comparison: missing low clouds**

- Clouds sometimes missed due to lidar beam attenuation
- Low-level mixed-phase clouds likely underrepresented in Cloudnet data sets
- Missing in cloud statistics

CRES



#### Low-level stratus clouds during MOSAiC (Arctic ocean)





Low-level stratus: LLS

# **ARSCL** comparison during **MOSAiC** (Arctic ocean)



• Low-level stratus clouds overestimated

CRES

 High level clouds overestimated by ARSCL



Griesche et al., Sci. Data, 2024



#### **Cloud properties for radiative transfer simulations**



Griesche et al., ACP, 2024

CCRES Workshop, online – June 11th, 2024

R

CCRES

# Surface shortwave and longwave cloud radiative effect



CCRES Workshop, online – June 11th, 2024

CRFS

# Summary

- Lidar beam attenuated below lowest Cloudnet range gate
- Clouds may be detected by cloud radar
  - → No cloud identified
    - → No cloud properties derived
  - $\rightarrow$  Cloud detected by cloud radar: pure ice cloud
    - $\rightarrow$  No liquid cloud properties derived
- Liquid clouds likely underrepresented in Cloudnet data sets
  - → Missing in cloud statistics
- Missing liquid cloud cause large errors in radiative transfer simulations







# **Discussion - suggestions to adress the deficiencies**

- Start Cloudnet mask at ground level
- Use lidar to detect low-level clouds
- Compare LWP to LWC for liquid cloud identification
- Use VOODOO to identify also higher reaching liquid clouds





Thank you