

ACTRIS HIGHLIGHTS 2024

ACTRIS HIGHLIGHTS 2024

Editor

Giulia Saponaro

Contributors

Arnoud Apituley, Daniele Bortoli, Barbara Brooks, Carmela Cornacchia, Bart Dils, Ariane Dubost, Valentin Duflot, Anna Franck, Simone Gagliardi, Giuseppe Gargano, Martin Gysel-Beer, Silja Häme, Martial Haeffelin, Kristina Höhler, Eija Juurola, Niku Kivekäs, Mikko Martikainen, Martine Maziere, Nikolaos Mihalopoulos, Lucia Mona, Kalin Mutavchiev, Amalia Muñoz, Cathrine Lund Myhre, Doina Nicolae, Steffen M. Noe, Jakub Ondracek, Tuukka Petäjä, Aleksander Pietruczuk, Rosa Maria Altieri Petracca, Jean-Philippe Putaud, Stefan Reimann, Francesca Ricciardi, Anna Salonen, Stéphane Sauvage, Jean Sciare, Henrik Skov, Iwona Stachlewska, Erik Swietlicki, Ralf Tillmann, Carlos Toledano, Jochen Wagner, Ulla Wandinger, John Wenger, Alfred Wiedensohler.

Designers

Laura Liarte, Giulia Saponaro

www.actris.eu

The Aerosol, Clouds and Trace Gases Research Infrastructure ACTRIS Highlights 2024, Helsinki, November 2025

This document was prepared with assistance from Al-based language tools. All content has been reviewed and validated by the Editor and Contributors.

Published by ACTRIS ERIC Head Office

Erik Palmenin Aukio 1, 00560 Helsinki, Finland

www.actris.eu

The Aerosol, Clouds and Trace Gases Research Infrastructure ACTRIS Highlights 2024, Helsinki, November 2025

Copyright: Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS), November 2025

Table of Contents

Forewords	1	Our Catalogue of Services	3
About ACTRIS	2	Our Users	4
Our Member Countries	3	From Objectives to Impac	ts5
1 Advancing Excelled	nce in Atmosph	neric Research	6
 Providing reliable high-qual Exploring the Atmosphe Powering Research at Al Scientific Highlights 	re with ACTRIS Da CTRIS Facilities	8	ge
2 Developing Skills of	and Competenc	es	12
Building capacity and empo Learning Pathways in At Professional Training an	tmospheric Scienc	e13	
3 Fostering Collabor	ration and Inno	ovation	17
Connecting science, technology impact • Partnering for success • External Relations • Innovation and Collabor • Growing the ACTRIS Con	ration with Indust	19 ry22	ovation and
4 Strengthening Gov	vernance, Oper	ations and Sustainability	28
Ensuring effective governance capacity to serve science an Progresses of the ACTRIS Updates on ACTRIS ERIC ACTRIS ERIC Central Factors	d society S National Facility T Management	30	tworthy
5 Annexes			34
Annex I - ACTRIS Central For Annex II - International edu Annex III - Events in 2024 Annex IV - Glossary Annex V - 2024 Delegates of Annex VI - Scientific and International Annex VIII - List of reported	ucation and training of the ACTRIS ERIC novation Advisory	ng activities43 44 48 General Assembly51 Board52 53	

Forewords

2024 marks an important milestone for ACTRIS. It was our first full year as a European Research Infrastructure Consortium, and I am pleased to introduce the inaugural edition of the ACTRIS Highlights with great pride. This new annual publication reflects our commitment to transparency, shared ambition, and celebrating the accomplishments of our community.

This year was exceptional for ACTRIS in many ways. We strengthened the foundations of our operations, advanced the scientific and technological excellence that defines us, and expanded our role in Europe and beyond. From the launch of the new ACTRIS Data Portal to the successful delivery of access services, major international research campaigns, and the first ACTRIS Science Conference, 2024 demonstrated how far ACTRIS has come and how much potential lies ahead.

Personally, 2024 was a significant year. I was honoured to be elected as the first Director General of ACTRIS ERIC, following my time as Interim Director General. I am grateful for the trust placed in me and deeply inspired by the dedication of everyone contributing to ACTRIS: scientists, engineers, technical experts, facility operators, host organisations, and the many partners who work with us across Europe and around the world.

The achievements highlighted in this report are the result of collective effort. They show not only the strength of our scientific capabilities but also the power of collaboration and shared purpose across our Member Countries, Central Facilities, National Facilities, and partners. Together, we operate a research infrastructure that delivers high-quality observations, fosters innovation, and provides essential knowledge to support science, society, and environmental policy.

As we look forward, ACTRIS will continue to develop the services, technologies, and community that enable excellent atmospheric research. I warmly thank everyone who contributed to the successes of 2024, and I invite you to discover in these pages the momentum, expertise, and commitment that make ACTRIS a cornerstone of Earth science.

Together, we advance ACTRIS. Together, we advance atmospheric science.

Eija Juurola

ACTRIS ERIC

Director General

About ACTRIS

Exploring the Atmosphere

The Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS) is the pan-European research infrastructure dedicated to the observation and understanding of short-lived atmospheric constituents and their interactions.

ACTRIS provides open access to high-quality data, state-of-the-art facilities, and tailored services provided by its Central Facilities and National Facilities, supporting cutting-edge atmospheric and climate research.

Our Strategy

Our Values Guide Us

User Focus

understanding of aim at meeting them

Innovation and renewal

We foster learning and

Teamwork and passion

together. Collaboration with each other and our stakeholders is at the heart of what we

Integrity

unquestionable. We and ethical behaviour.

Our Success is built on

Expertise

Science-based technological

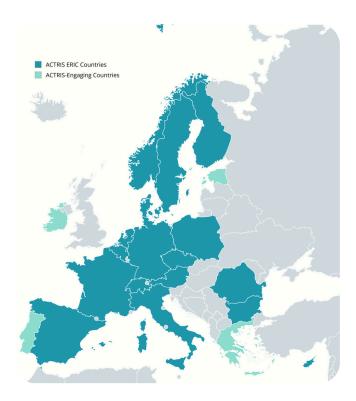
Engaged & people

Collaborations

Strong financial

We drive excellence & scientific advances in the field of atmospheric research

Deeper understanding


Scientific progresses based on high quality observations and user-focused services

Innovation development

tailored services.

Technological advancements through partnerships and

Our Member Countries &

ACTRIS Member Countries

Austria Belgium Bulgaria **Cyprus Czech Republic Denmark** Finland France Germany Italy **The Netherlands** Norway **Poland** Romania Spain Sweden

Switzerland

ACTRIS Engaging Countries

Estonia Greece Ireland **Portugal**

Our Catalogue of Services &

147	Total services	98	Research Services
88	Technological Services	59	Training Services
53	Data and Digital Services	51	Innovation Services

Our 2024 in numbers

	Access requests to ACTRIS Facilities		Users to ACTRIS Facilities
323,403	Data files available	27	Projects

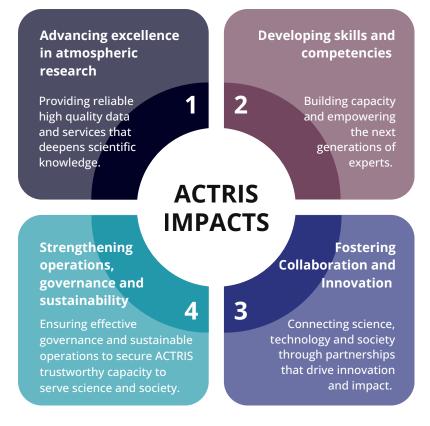
Our Users

By application of ACTRIS products:

- Climate modelling
- Atmospheric environment modelling and forecast
- Ecological research and monitoring
- Health studies and epidemiology
- Energy (solar energy)
- Academic research
- Meteorological agencies
- Environmental ministries and agencies at national and regional levels
- Natural resources ministries and agencies at national and regional levels
- Health agencies
- Industrial users, including companies of a large span of sizes and activities

By activity domain:

- Academic research
- Meteorological agencies
- Governmental agencies,
 Environmental ministries and agencies at national and regional levels
- Transport agencies
- Hydrological institutes and agencies
- Natural resources ministries and agencies at national and regional levels
- Health agencies
- Industrial users, including companies of a large span of sizes and activities


From Objectives to Impacts

The objectives of ACTRIS, as defined in its Statutes, are to:

- Advance scientific excellence and technological innovation in atmospheric research by providing high-quality, integrated data on aerosols, clouds, and trace gases, thereby contributing to the completeness of the Earth observation system and improving climate and Earth system models
- Ensure the coordinated operation and sustainable development of a distributed research infrastructure that integrates National and Central Facilities, offering open and reliable access to data, services, and research platforms for a broad community of users.
- Promote the effective use of ACTRIS data and services across scientific, environmental, and policy domains.

- Foster collaboration and knowledge exchange between research, education, and innovation by engaging with academia, industry, and other stakeholders, and by supporting training and capacity-building initiatives.
- Strengthen synergies and interoperability with other research infrastructures and initiatives at European and global levels, ensuring coherence with national and European strategies and maximizing ACTRIS's contribution to science, society, and technology.

Together, these pillars turn ACTRIS objectives into tangible impacts for science, and society.

Advancing Excellence in Atmospheric Research

Providing reliable high-quality data and services that deepen scientific knowledge

Research **Performing Organizations**

Countries

89M€ 250+

Financial Volume

Publications reported

Projects

Exploring the Atmosphere through the ACTRIS Data Portal &

A New Gateway to Atmospheric Knowledge

ACTRIS reached a major milestone in 2024 with the launch of its new ACTRIS Data Portal, a nextgeneration access point to atmospheric research data.

The portal opens the door to over 200,000 FAIR data files, covering 150 atmospheric variables from over 600 facilities worldwide, with records that in some cases span several decades. Users can now explore, visualize, and download data on aerosols, clouds, and trace gases - essential information for understanding air quality, climate, and atmospheric composition.

"The new portal represents a transformative step for ACTRIS, enabling open, efficient, and collaborative use of atmospheric data across borders."

Cathrine Lund Myhre, ACTRIS Data Centre Leader

Open access to ACTRIS data and Digital services

The new ACTRIS Data Portal was released in September 2024 for all users along with other data products, tools, services, and complementary data from other frameworks, services, and digital tools.

In the period 01 September 2024-31 December 2024, the portal recorded approximately 2,297 visitors from 67 countries. The USA, Norway, Italy, Germany, and France were the countries with the highest number of visits to the ACTRIS Data Portal.

The ACTRIS Virtual Research Environment (VRE)

Complementing the portal, the ACTRIS VRE provides researchers with a cloud-based workspace to access, analyze, and integrate atmospheric data efficiently.

Powered by JupyterHub, the VRE offers readyto-use Python tools and workflows that simplify analysis and promote data reuse.

Key features:

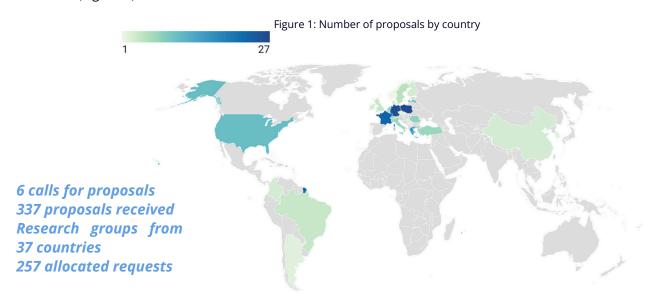
- Intuitive tools for search, visualization, and trend analysis
- Integration of datasets such as equivalent black carbon, FLEXPART model outputs, and ultrafine particles
- Efficient access to large-scale data volumes and collaborative analysis tools

Collaborative Innovation at European Scale

This achievement is the result of a truly collaborative effort. More than 30 experts, scientists, developers, and engineers, from 8 European research organizations (NILU, CNR, CNRS, FMI, BSC, IPSL, ULille, UPEC, UT) in Norway, France, Italy, Finland, and Spain worked together to make the portal a reality.

The initiative enhances Europe's capacity for open data exchange, fostering innovation in:

- Air quality monitoring
- Climate research
- Environmental policy and industry applications


Powering Research at ACTRIS Facilities &

The main aim of ACTRIS is to enable excellent science, both as a service to international users and as an in-house activity. This is achieved mainly by providing merit-based open access to its research facilities and promoting internal research.

In 2024, ACTRIS launched 6 calls for proposals, launched within the framework of EU-FUNDED project ATMO-ACCESS and ITINERIS, to use the Consortium's facilities: 185 proposals were received and 149 were accepted. The 2024 accepted project proposals came from 27 countries, of which 44% are ACTRIS ERIC Member Countries, and 40% are non-EU countries (Figure 1).

Main achievement in 2024

- Achievement of 6 access calls in the framework of the EU-funded projects ATMO-ACCESS and ITINERIS
- Access request proposals received from 27 countries, including non-EU countries
- 56 access user events across 31 ACTRIS facilities distributed in 14 European countries were successfully granted to 211 users for their own project development

Observational Platforms accounted for the majority of activities, confirming their central role in providing continuous and high-value atmospheric measurements. Atmospheric simulation chambers and Central Facility Units also supported a substantial number of projects, while mobile platforms enabled collaborative and campaign-based research. Geographically, access was distributed across 14 European countries, with strong participation from Germany, France, Finland, Poland, and Italy, demonstrating ACTRIS's broad pan-European reach and its capacity to provide diverse, high-quality services to the research and innovation community.

A pilot call was launched in 2024 to test an access funding scheme based on national funds, using the Italian-funded project ITINERIS as a test case.

The activities carried out within this framework built upon several well-established functions of the ACTRIS ERIC Service and Access Management Unit (SAMU), while also requiring significant efforts to design and implement new processes tailored to this funding model. To accommodate the specificities of a national co-funded access programme, several complementary activities were introduced. These included the development of measures to ensure compliance with GDPR regulations, the creation of a Service Level Agreement (SLA) template to be signed by each participating provider, and the establishment of internal operational and financial procedures and templates at the ACTRIS ERIC Head Office for managing the programme.

Scientific Highlights

ACTRIS BAMS Paper Reaches Over 20,000 Views &

The Bulletin of the American Meteorological Society (BAMS) published a comprehensive reference paper on ACTRIS, highlighting its mission, added value to atmospheric science, and broad range of services for academia, and the public and private sectors.

The paper outlines ACTRIS governance, major scientific achievements, and future directions. Since publication, it has reached over 20,000 views and 4,000 downloads, underscoring ACTRIS's strong visibility and recognition in the atmospheric research community.

CREGARS

CINDI-3: a campaign advancing our understanding of air pollution $\mathscr O$

In June 2024, the third Cabauw Intercomparison of UV-Vis DOAS Instruments (CINDI-3) took place in Cabauw Atmospheric Research Station, the Netherlands.

The campaign brought together over 100 participants from 16 countries operating 44 instruments, making it the largest ground-based air pollution intercomparison of its kind.

The campaign provided highquality reference data under challenging weather conditions, supporting the validation of current and future satellite missions, including Sentinel-4 and Sentinel-5, as part of ESA's Fiducial Reference Measurements (FRM) Programme.

CiGas

Intercomparison campaign of chemical ionization mass spectrometry

In summer 2024, the University of Helsinki hosted the second ACTRIS intercomparison campaign of chemical ionization mass spectrometers at the Finnish ACTRIS National Facility SMEAR II in Hyytiälä.

Six instruments and their users participated in the two-week campaign, which compared measurements of a wide range of inorganic and organic vapours under summertime conditions.

The campaign represents an important step towards future QA/QC measures for ACTRIS National Facilities and ensures reliability and comparability of data on condensable vapours and direct aerosol precursors across the ACTRIS community.

Scientific Highlights

CCRES

CLOUDLAB: Exploring Ice Formation in Supercooled Clouds ${\mathscr O}$

The TROPOS mobile exploratory platform LACROS took part in a three-month winter field campaign near Eriswil, Switzerland.

Conducted under the ERC CLOUDLAB project led by ETH Zürich and within the DFG-funded PolarCAP framework, the campaign brought together an exceptional suite of ground-based and airborne sensors, representing one of

Europe's largest coordinated operations of multiwavelength radar and lidar systems.

LACROS contributed 35 GHz scanning and 94 GHz vertical-pointing cloud radars, complementing instruments from ETH Zürich, the University of Leipzig, and EPFL. By investigating slightly supercooled cloud systems (down to -10 °C), the campaign advanced

understanding of ice formation and cloud-aerosol interactions.

CiGas

EUROVOC 2024: Investigating Volatile Organic Compound (VOC) Emissions and Their Impact on Air Quality \mathscr{S}

In September 2024, ACTRIS coorganized EUROVOC, the second pan-European intensive measurement period on VOCs, engaging 45 urban and rural sites across Europe, including ACTRIS National Facilities, ICOS, EMEP, and local monitoring networks. This large-scale campaign strengthens Europe-wide understanding of VOC emissions and their impacts.

Key progress was also made in quality assurance: ACTRIS CiGas-FZN revised its mobile calibration equipment and introduced a fixed test cycle for NOx audits to better characterize humidity and ozone interferences, while CiGas-CH advanced near-real time delivery of VOC data with automatic quality checks.

As a pilot, VOC data from the Jungfraujoch site are now directly submitted to the Copernicus Atmosphere Monitoring Service (CAMS), showcasing ACTRIS's role in bridging research infrastructures and operational services.

ACTRIS Romania inaugurates the ACTRIS-UBB Observation Platform

On 21 October 2024, Babeş-Bolyai University (UBB) officially inaugurated the ACTRIS-UBB Platform, marking a significant advancement in Europe's atmospheric observation network and Romania's contribution to ACTRIS. The new facility plays a crucial role in bridging ground-based atmospheric monitoring with the European Space Agency's Earth observation initiatives.

Designed to deliver highquality observations relevant for atmospheric composition and climate studies, it is integrated with the groundbased observing segment of ESA's Earth observation programme, thereby contributing to the calibration, validation, and synergy of satellite and in-situ datasets. Through standardized protocols and instrument interoperability, ACTRIS-UBB ensures that data produced are consistent with ACTRIS's quality and service standards.

As part of ACTRIS, the facility fosters collaboration, training, and data exchange within the European and global atmospheric science community.

Scientific Highlights

CAIS-ECAC

Understanding the Impacts of Domestic Biomass Burning

Within the ATMO-ACCESS framework, the project "MIND-BB", researchers from ENEA and University of Milano-Bicocca collaborated at EUPHORE, a highly instrumented ACTRIS exploratory platform in Valencia, Spain.

The campaign investigated emissions from different domestic heating devices and

ood types, monitoring their physical and chemical transformations under day and night conditions.

The study also assessed direct impacts on human lung cells using the air-liquid interface exposure system. This multidisciplinary approach provides valuable insights into the environmental and health hazards of domestic biomass

burning, supporting improved emission inventories in EU, refined air quality and atmospheric models, enhanced understanding of toxicological risks, and evidence-based strategies for mitigation and policy development.

ASC

SAPHURBAN: Investigating Secondary Organic Aerosol Formation in Urban Environments

The ATMO-ACCESS transnational access project "SAPHURBAN", led by the University of Eastern Finland, addressed this challenge using advanced chemical ionization mass spectrometry in controlled experiments at the SAPHIR simulation chamber at Forschungszentrum Jülich.

The outcomes provide novel insights into SOA formation pathways, quantifying the impact of VCPs, cooking, and traffic emissions on urban air quality. These results will enhance chemical transport models, improving predictions of urban SOA formation, and support evidence-based strategies for air quality management.

CCRES

Cloud Calibration Transfer Campaign at the JOYCE Observatory ${\mathscr S}$

From December 2023 to February 2024, the CCRES-France reference cloud radar (94 GHz BASTA) was deployed at the JOYCE observatory in Jülich, Germany, alongside the local MIRA radar, to test the calibration transfer service.

The campaign demonstrated a negligible mean bias (0.2 dB) between radars, validating the reliability of the reference

calibration and informing procedures for re-calibrating CloudNET products.

Key insights on methodology, resources, and best practices were shared at the CCRES workshop in June 2024, supporting the development of calibration transfer as a service for ACTRIS National Facilities.

Developing Skills and Competences

Building capacity and empowering the next generations of experts

2000+ 1016

Researchers

ACTRIS Facilities

46

MSc Degrees

PhD Degrees

International education & training events

Learning Pathways in Atmospheric Sciences

AGORA International Doctoral Summer School 🔗

This second edition was organized in the framework of the Doctoral School of Sciences, Technologies and Engineering of the University of Granada.

The lectures, given by top-level experts from the ACTRIS facilities for aerosol in-situ and remote sensing measurements, provide fundamental knowledge in novel, advanced

techniques for measuring aerosol properties, covering in situ, remote sensing, and laboratory-based instruments.

The training school is intended mainly for researchers and technicians from the atmospheric field (advanced master students, doctoral students, early-career scientists, or technicians).

HErZ 2024 Summer School: Modern Methods for Atmospheric Profiling

In August 2024, 48 international students and early-career researchers participated in a two-week summer school on atmospheric profiling at the Jülich Observatory for Cloud Evolution (JOYCE), an ACTRIS National Facility.

Participants gained practical experience with state-of-theart observation techniques,

including lidar, microwave radiometers, UAS (drones), and radiosondes, while working in small groups on research projects linked to the VITAL I campaign.

This campaign focused on improving observations of the vertical structure of the troposphere to address key gaps in wind, water vapor, and temperature profiling.

OGTAC-CC Training Course S

From 11 to 15 November 2024, the OrGanic Tracers and **Aerosol Constituents** Calibration Centre (OGTAC-CC), a unit of the ACTRIS Centre for Aerosol in Situ measurements, hosted a five-day hands-on training at TROPOS ACD, Leipzig.

The course trained participants from across Europe in LC-MS analysis of

organic tracer compounds and organic/elemental carbon (OC/EC) determination in particulate matter.

The program combined lectures in atmospheric and analytical chemistry with practical sessions, including experiments in the TROPOS atmospheric simulation chamber, visits to the Melpitz field station, and hands-on

work with state-of-the-art analytical instrumentation.

By integrating theory and practice, the course enhanced skills, collaboration, and capacity across the European atmospheric research community, supporting highquality, harmonized aerosol measurements and future joint research.

Learning Pathways in Atmospheric Sciences

ATMO-ACCESS Autumn Schools on Sensors and Drones

6

ACTRIS partners EMPA (Switzerland) and CARE-C, Cyprus Institute, jointly organized two parallel hybrid ATMO-ACCESS Training Schools to equip emerging atmospheric scientists with hands-on expertise in sensor operation and data analysis.

The EMPA-hosted school near Zurich focused on groundbased sensor systems in urban and remote settings, while the CARE-C school in Nicosia offered practical training on drone-based atmospheric measurements.

Aimed at M.Sc. and Ph.D. students, the courses combined in-person and hybrid learning formats, fostering exchange between participants and experts from both sites.

More than 20 participants from 17 different countries including non-EU countries such as Lebanon, India, Pakistan, Turkey, Nigeria and Brazil attended the trainings. Some students were supported by ATMO-ACCESS TNA programme.

Training public authorities on novel air quality measurements

In October 2024, ACTRIS contributed to the H2020 projects ATMO-ACCESS and RI-URBANS by organizing two online training sessions for public authorities on the implementation of protocols for measuring novel air quality parameters under the revised EU Ambient Air Quality Directive.

The first webinar focused on ultrafine particles (UFP) and

particle number size distribution (PNSD), while the second addressed measurements of volatile organic compounds (VOCs), particulate matter (PM), and black carbon (BC).

Each session featured expert speakers from the European atmospheric science community, offering both scientific insights and practical guidance on the deployment of these advanced measurement echniques.

These trainings strengthened technical capacity among environmental authorities and fostered consistency and high-quality standards in air quality monitoring across Europe, supporting the effective implementation of the updated regulatory framework.

Professional trainings and technical workshops

Aerosol Chemical Monitor Calibration Centre Interlaboratory Comparison ${\mathscr S}$

In November 2024, the Aerosol **Chemical Monitor Calibration** Centre (ACMCC) at ACTRIS France hosted its annual interlaboratory comparison, spanning the full month from instrument installation to postcomparison assessments under ambient air conditions.

The event included full calibrations of all participating instruments and hands-on

workshops for participants, covering data processing, operational procedures, and best practices. These activities strengthen the accuracy, consistency, and reliability of aerosol measurements across **ACTRIS National Facilities.**

For the first time, Aerospec participated to evaluate their new instrument, F AIR, capable of measuring the chemical

composition of fine particles, including the molecular components of the organic fraction. Long-standing partners, Aerodyne Research and Addair, provided crucial support.

The intercomparison fostered knowledge, collaboration, and innovation.

Strengthening the Lidar Community \mathscr{S}

From 9 to 12 December 2024, the annual Lidar QA/QC Workshop brought together representatives from 27 stations in a productive and collaborative online event. Hosted by experts from CARS and Aerosol Remote Sensing Data Centre Unit, the workshop expanded its focus to include both quality assurance testing and data processing, providing a

comprehensive platform for knowledge exchange.

Each station participated in a dedicated 30-minute session to review QA reports, discuss measurement procedures, and address technical challenges with guidance from CARS and ARES experts. For new stations, these sessions also facilitated introductions to the broader network. Updates on

labelling processes ensured clarity, alignment, and consistency across all stations.

Beyond technical discussions, the workshop reinforced the community of lidar professionals, fostering collaboration, sharing best practices, and promoting innovation and excellence in QA/QC procedures across the network.

Microwave Radiometer Training Workshop &

From 24-26 April 2024, a Microwave Radiometer (MWR) training workshop was held in Jülich, Germany, providing participants with theoretical and practical knowledge on MWR operation, data processing, and software use. Hands-on sessions included radome replacement, calibration, and discussions with the manufacturer (RPG).

The workshop gathered 9 participants from 7 countries, including 6 from ACTRIS **National Facilities** (Cabauw/Delft, Chilbolton, Warsaw, Cluj, Payerne, Bucharest), strengthening technical expertise and capacity across the ACTRIS community.

Professional trainings and technical workshops

CiGas

Strengthening NOx/VOC Data Quality Across ACTRIS 🔗

In April 2024, ACTRIS held its annual NOx/VOC Quality Assurance Workshop, bringing together experts to review data submissions to the EBAS database. The three-day online workshop featured station reports, scientific presentations, and discussions on future activities, ensuring continued harmonization and high-quality data within the ACTRIS community.

Establishing strong connections with associated communities such as WMO-GAW (WCC-NOx), TOAR-II, and National Metrology Institutes (NMIs) is a key focus. Training and consultancy efforts include providing expert advice on NOx measurements and organizing CiGas training programs, such as those within GAWTEC.

ASC

First ACTRIS ASCC Workshop

The first ACTRIS Atmospheric Simulation Chamber Community (ASCC) Workshop was successfully held at the University of Wuppertal from 18 to 29 March 2024 and brought together 36 participants from 9 countries.

Throughout the meeting, participants delivered short scientific and technical presentations showcasing the

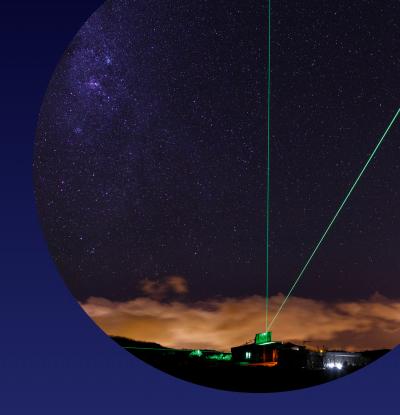
latest research results, methodological advances, and technological developments achieved at atmospheric simulation chamber laboratories across Europe.

Beyond the scientific sessions, the workshop provided valuable opportunities to strengthen the ASCC network, align ongoing efforts with the broader ACTRIS framework, and identify priorities for future joint initiatives and training activities.

The success of this first dedicated ASCC workshop demonstrates the community's commitment to capacity building, collaboration, and the continuous improvement of ACTRIS services through the active involvement of its scientific and technical members.

CCRES

Strengthening the Cloud Remote Sensing Community


CCRES and the cloud remote sensing data centre unit (CLU) co-organized an online workshop with around 50 participants, fostering knowledge exchange within the Cloud Remote Sensing community. Sessions focused on services provided by CCRES and CLU to ACTRIS National Facilities, including Doppler Cloud Radar, Microwave Radiometer, and Doppler

Lidar operations, EarthCARE calibration/validation, and updates from the CloudNet Data Centre.

The workshop showcased research contributions covering topics such as disdrometer calibration, long-term cloud and water vapour statistics, cloud radar data exploitation, and

novel cloud classification approaches.

This event reinforced collaboration, shared expertise, and the continued development of high-quality cloud remote sensing capabilities within ACTRIS.

3

Fostering Collaboration and Innovation

Connecting science, technology and society through partnerships that drive innovation and impact

112

Research **Performing Organizations**

Countries

89M€ 250+

Financial Volume

Publications reported

Partnering for Success

ACTRIS-NDACC MoU 🔗

In May 2024, the ACTRIS General Assembly approved and signed a Memorandum of Understanding (MoU) with the Network for the Detection of Atmospheric Composition Change (NDACC). This landmark agreement, the first international collaboration formally established by ACTRIS, reflects the longstanding scientific heritage, shared objectives, and overlapping stakeholders between the two communities.

The MoU lays the foundation for closer cooperation in data sharing, joint research, and scientific service activities.

Several ACTRIS National Facilities build on NDACC stations and expertise, and members of the NDACC Steering Committee are already actively involved in ACTRIS Topical Centres.

This collaboration will further strengthen the integration of global ground-based atmospheric composition monitoring and enhance ACTRIS's role in addressing critical environmental challenges.

ACTRIS ERIC Joins the ERIC Forum 🔗

ACTRIS ERIC officially joined the ERIC Forum, marking an important step in strengthening collaboration with other European Research Infrastructure Consortia. The signing of the Memorandum of Understanding was celebrated by ACTRIS Director General Eija Juurola (to the left in the picture) and ERIC Forum ExBo Chair Antje Keppler (to the right in the picture).

The ERIC Forum provides a platform for exchange of knowledge, best practices, and coordinated action, supporting EU policy implementation and addressing major societal challenges. Through this membership, ACTRIS reinforces its role in the European research landscape and contributes to joint efforts in advancing Earth system observation and delivering knowledge for sustainable solutions.

External Relations

ACTRIS strengthens its international reach with the completion of the Cabo Verde station 🔗

ACTRIS-D, the German Consortium of ACTRIS ERIC, reached a major milestone with the completion of the Cabo Verde Atmospheric Observatory (CVAO), expanding its observation network into the tropical Atlantic; one of the most critical regions for studying climate and air–sea interactions.

Operated jointly by the Cape Verde Institute for Meteorology and Geophysics (INMG), TROPOS, MPI-BGC, and the University of York, the CVAO is now a fully integrated ACTRIS National Facility. Supported by over €3 million from Germany's ACTRIS-D programme, the expansion included a new laboratory building in Calhau and a remote sensing station in Mindelo, enabling comprehensive observations of aerosols, clouds, and radiation. The site combines advanced in-situ and remote sensing instruments, including a TROPOS-developed lidar, microwave radiometer, wind lidar, and cloud radar; together forming a unique ACTRIS node for tropical atmospheric research. Officially inaugurated during the visit of the German and Cabo Verdean presidents, the station now serves as a key ACTRIS reference site for the ESA-JAXA EarthCARE satellite and contributes to international campaigns such as ORCESTRA and ATMO-ACCESS.

The completion of the Cabo Verde station underscores ACTRIS's commitment to providing global-scale, high-quality observations essential for advancing climate science and satellite validation.

NASA Delegation Visits ACTRIS-INOE Observation Facility in Romania §

On 18 October 2024, the National Institute for Research and Development in Optoelectronics (INOE 2000) hosted a high-level delegation from the National Aeronautics and Space Administration (NASA), the United States Embassy, and the Romanian Space Agency (ROSA). The visit highlighted INOE's scientific excellence and its strong engagement in international collaborations within ACTRIS and other major atmospheric research networks.

During the visit, the delegation toured INOE's state-of-the-art aerosol in situ, aerosol remote sensing, and cloud remote sensing laboratories, gaining insight into ongoing research on atmospheric composition and environmental monitoring. Discussions focused on advances in aerosol measurement technologies, satellite product validation, and future opportunities for transatlantic cooperation.

The visit also underscored INOE's active participation in CARGO-ACT (Cooperation and Agreements enhancing Global Interoperability for Aerosol, Cloud and Trace Gas Research Infrastructures); a joint project (2024–2027) between ACTRIS and three major U.S. agencies: the DOE ARM User Facility, NASA's MPLNET, and NOAA's Global Monitoring Laboratory (GML). CARGO-ACT marks an important milestone toward establishing a globally interoperable research infrastructure for atmospheric observations.

As the ACTRIS National Facility for Remote Sensing, INOE plays a key role in connecting European expertise with global initiatives. Its active involvement in EARLINET, E-PROFILE, and AERONET networks continues to strengthen data interoperability, foster scientific exchange, and ensure the reliability of atmospheric observations worldwide.

External Relations

ACTRIS Engages in Global Metrology for Climate and Environment

From 16 to 18 September 2024, ACTRIS participated in the 1st Stakeholder Meeting of the CIPM Sectorial Task Group on Climate Change and Environment, hosted at the BIPM headquarters in Sèvres, France. The Task Group provides a global focal point for metrology activities related to climate and environmental monitoring. Its aim is to coordinate and advance measurement standards critical for understanding and addressing climate change. Presentations and posters showcased progress on 128 recommendations and new initiatives emerging from the 2022 BIPM-WMO Workshop on Metrology for Climate Action, a workshop to which ACTRIS previously contributed.

During the meeting, Thérèse Salameh (IMT Nord Europe, CiGas deputy leader) delivered a presentation highlighting ACTRIS's mission, with a particular focus on the CiGas developments and activities. The three-day event covered topics ranging from cryosphere monitoring to atmospheric composition measurements, bringing together metrology and observational research communities to share cutting-edge science and best practices.

ACTRIS's engagement in this international forum underscores its role in advancing measurement standards, strengthening global collaborations, and ensuring the reliability of atmospheric observations critical for climate research and policy.

Celebration of the 20th Anniversary of the "Atmospheric Path" at Monte Cimone (Italy)

On 7–8 June 2024, CNR-ISAC, in collaboration with the Italian Air Force and Parchi Emilia Centrale, celebrated the 20th anniversary of the Atmospheric Path, an educational trail culminating at the ACTRIS/ICOS/GAW Global Station at Monte Cimone. The trail, visited annually by schools and tourists, serves as an open-air laboratory and classroom, showcasing how atmospheric observations are conducted to study climate and air quality.

For the anniversary, didactic panels along the trail were fully updated, and participants toured the observatory, learning about daily pollution monitoring and atmospheric composition. The event, held on World Environment Day, included a conference, a summit hike, guided tours of the scientific facilities, and a "Concert for Climate," highlighting ACTRIS's role in education, outreach, and global atmospheric monitoring.

External Relations

ACTRIS presence in the European and global research infrastructure landscape

In 2024, ACTRIS ERIC actively strengthened its visibility and engagement within the European and international research landscape through participation in key high-level events.

ACTRIS ERIC took part in the Belgian Presidency Conference on Research Infrastructures "Research Infrastructures in a Changing Global, Environmental and Socio-economic Context" and the workshop "Fostering the ERICs as Strategic Assets of the European Research Area", both held in Brussels in June 2024.

ACTRIS was also invited to contribute as a speaker and panelist at the International Conference on Research Infrastructures (ICRI 2024) and at the associated side event on European Environmental Research Infrastructures.

Earlier in the year, in January 2024, the ACTRIS ERIC Director General participated as an invited speaker at the Polar Night Week organized by SIOS.

Additionally, ACTRIS ERIC contributed to the first edition of the ESFRI Research Infrastructure Portfolio, published in spring 2024, which provides comprehensive information on ESFRI Projects and Landmarks and highlights their role within the European Research Area.

ACTRIS ERIC was represented in EUROGEO Workshop 2024, organized in Krakow, IAGOS 30th Anniversary Celebration, and ERIC Forum meetings.

ICRI 20

Bridging Science and Industry via Innovations Activities

In June 2024, ACTRIS contributed to the annual Innovation in Atmospheric Measurement Techniques Workshop \mathcal{S} , organized by the Climate and Atmosphere Research Center (CARE-C) of the Cyprus Institute, in collaboration with key European research infrastructures, including ICOS and IAGOS. The workshop brought together scientists, instrument developers, and industrial end-users to exchange on emerging atmospheric measurement technologies and their practical applications.

The event's strong industry participation created a direct interface between technology developers and real-world users.

This aligns closely with the goals of the ENVRINNOV project \mathscr{S} , which seeks to strengthen and coordinate innovation across environmental research infrastructures through the creation of the ENVRI Innovation Hub.

By contributing to such collaborative innovation environments, ACTRIS helps ensure that emerging measurement technologies are rapidly translated into impactful tools for research and operational monitoring, demonstrating the concrete value of ENVRINNOV's coordinated innovation framework.

Pioneering Aerosol Observations with CE710 LiDAR: Advancing ACTRIS Capabilities &

ACTRIS continues to strengthen its leadership in high-quality aerosol and cloud observations through the deployment and validation of the CE710 LiDAR, a state-of-the-art multi-spectral system developed in collaboration with LOA (University of Lille) and CIMEL.

The CE710 LiDAR provides high-resolution vertical profiles of aerosols and clouds, while integrated photometry delivers columnintegrated aerosol properties. This combination ensures enhanced data quality, precise calibration, and standardized measurements across ACTRIS stations, meeting the infrastructure's stringent Quality Assurance guidelines.

Since joining ACTRIS in 2015 via its precursor LILAS system, the CE710 has evolved into a modular, transportable, and future-proof instrument. Its multi-wavelength emissions, up to 15 detection channels, and advanced laser and fluorescence capabilities allow ACTRIS to:

- Characterize aerosol physical and chemical properties in unprecedented detail
- Provide high-quality data for atmospheric models and climate research
- Standardize measurements across the ACTRIS network through integrated calibration and AUSTRAL software for realtime processing

The CE710's deployment strengthens ACTRIS's community of Lidar professionals, supporting cross-site data consistency, collaborative research, and training opportunities. Its modular design ensures adaptability to evolving scientific needs, making it a cornerstone of ACTRIS's aerosol observation capabilities for years to come.

Experiments at the atmospheric simulation chamber SAPHIR

In the summer of 2024, experiments were carried out in the SAPHIR chamber mimicking conditions in the Delhi urban area.

Groups from the Universities of Birmingham and Nottingham joined forces with Airyx, a company specializing in novel gas sensing technologies.

Conditions in the chamber were pushed to 'extreme' pollution events, comparable to those observed during field campaigns in Delhi. This allowed Airyx's instruments to be tested in a wide range of chemical regimes, ensuring their stability and durability for long-term measurements in a variety of environments.

Translating research into innovative Service Tools: the RI-URBANS project featured in Green Deal's success stories §

The project RI-URBANS (Research Infrastructures Services Reinforcing Air Quality Monitoring in European Urban & Industrial Areas), in which ACTRIS plays a leading role, was featured in the publication "13 Success Stories of Green Deal Projects." This recognition highlights how research infrastructures like ACTRIS are driving innovation and contributing to the objectives of the European Green Deal.

RI-URBANS translates advanced atmospheric research and ACTRIS data into operational service tools that enhance urban and industrial air quality monitoring. These tools include advanced methodologies for source apportionment, ultrafine particle and oxidative potential monitoring, and real-time data integration between ACTRIS research platforms and air quality monitoring networks.

By co-developing these services with air quality agencies, city authorities, and technology providers, RI-URBANS demonstrates how ACTRIS-based innovations can directly support policy implementation, health impact assessment, and urban air quality management. The project exemplifies how ACTRIS fosters collaboration across sectors, bridging science, policy, and industry, to deliver solutions that improve environmental and societal well-being.

Advancing Climate Observation through Innovation: ACTRIS and the EarthCARE Mission \mathscr{D}

The EarthCARE satellite mission, a joint initiative of the European Space Agency (ESA) and the Japanese Space Agency (JAXA), marks a major milestone in atmospheric science. Launched on 29 May 2024, the mission delivers unprecedented insights into the interactions between clouds, aerosols, and radiation, key components influencing the Earth's climate system.


To ensure the mission's success, ACTRIS plays a central role in the calibration and validation (cal/val) of EarthCARE's satellite data. Leveraging a network of around 40 advanced ground-based stations across Europe and beyond, ACTRIS provides essential reference measurements using cutting-edge lidar and radar technologies. These facilities enable accurate comparison of satellite and ground observations, strengthening confidence in EarthCARE's data and supporting its use in climate models, weather forecasting, and environmental monitoring services.

ACTRIS's dense observational network, strategically distributed across diverse environments, offers a unique advantage for continuous calibration. With EarthCARE revisiting the same region every 25 days, ACTRIS ensures near-daily validation opportunities, maximizing data quality and reliability.

The largest ground-based contribution during EarthCARE's first year of operation came from ACTRIS, through its involvement in the ATMO-ACCESS pilot project.

Over 40 ACTRIS ground-based stations across Europe, equipped with state-of-the-art lidar and radar instruments, provided long-term, highresolution measurements of aerosol and cloud properties. These stations were strategically aligned with EarthCARE satellite overpasses, creating a powerful platform for crossvalidation. ACTRIS Central Facilities supported the campaign by offering calibrated reference data, expert services, and quality assurance, further strengthening the mission's scientific output. Collaborations with other networks, such as EARLINET and MPL-Net, contributed to a shared repository of validation data and a truly integrated observing system. ESA's recognition of ACTRIS as a key Cal/Val partner reflects the infrastructure's growing relevance for satellite validation and Earth system monitoring. The data collected will help refine EarthCARE algorithms and enhance the reliability of climate and weather models worldwide.

Beyond its scientific value, the EarthCARE campaign exemplifies how ACTRIS innovation and infrastructure enable cross-sector collaboration, providing reliable atmospheric data for space agencies, research organizations, and environmental service providers. These partnerships strengthen Europe's capacity for climate monitoring and sustainable technology development, reinforcing ACTRIS's role as a key enabler of innovation and industry application in atmospheric research.

Ensuring quality and fostering industry collaboration through ACTRIS-Compliant instruments \mathscr{S}

In 2024, ACTRIS finalized and officially released the ACTRIS-Compliant Instrument process, marking a major milestone in ensuring the quality, traceability, and reliability of atmospheric measurements across the research infrastructure. This achievement strengthens ACTRIS's position as a key provider of high-quality, standardized data on short-lived atmospheric components, supporting both scientific excellence and technological innovation.

The process is coordinated by the ACTRIS Topical Centres and the Data Centre (DC), which jointly define, implement, and maintain strict quality criteria for measurements, calibrations, and data processing. These criteria, rooted in internationally recognized standards and scientific literature, are now publicly available, serving not only ACTRIS data providers and users but also instrument manufacturers.

With the publication of the ACTRIS instrument requirements, manufacturers can now formally assess and demonstrate the compliance of their instruments with ACTRIS standards. They are invited to participate in instrument performance workshops organized by the Topical Centres, where instruments are tested against ACTRIS-defined specifications. Following successful evaluation, instruments are documented and may be listed as ACTRIS-compliant upon request.

This transparent and rigorous framework benefits both science and industry. It drives the development and improvement of atmospheric measurement technologies, while offering manufacturers visibility and recognition; reinforcing trust, credibility, and the uptake of validated technologies across both research and operational contexts.

Growing the ACTRIS Community

A new look for a growing community &

In 2024, ACTRIS unveiled its new visual identity, marking an important step in strengthening our community's shared image and voice. The redesign embodies what ACTRIS has become — a dynamic, collaborative, and forward-looking research infrastructure serving a growing network of scientists, technical experts, and partners across Europe.

The new identity, detailed in the ACTRIS Brand Guidelines, brings together all parts of ACTRIS under a unified visual language. Rolling out the new look was not just a design exercise — it was a community effort. It helped align how ACTRIS presents itself, ensuring that every station, document, and event communicates one coherent message: we are the ACTRIS Community.

ACTRIS Week 2024

The ACTRIS Week is the annual meeting of the ACTRIS community, bringing together scientists, technical experts, management teams, and partners to share progress, align on strategic goals, and strengthen collaboration across the research infrastructure.

The ACTRIS Week 2024, held in Matera, Italy, brought together the largest ACTRIS community gathering to date — a testament to the infrastructure's growing reach and engagement. With 190 participants on-site and over 350 participants in total, the event fostered vibrant exchange, collaboration, and strategic dialogue across all components of ACTRIS.

The purpose of ACTRIS Week is to foster collaboration, knowledge exchange, and community building among all ACTRIS components — from Central Facilities and National Facilities to the ACTRIS ERIC headquarters and partner organizations. The 2024 edition focused on strengthening connections across the network, promoting innovation in atmospheric research, and discussing the future direction of ACTRIS services and infrastructure development.

Sessions and workshops explored a wide range of topics, including data and service integration, technological innovation, stakeholder engagement, and international collaboration.

These discussions not only advanced shared understanding of ACTRIS's role in environmental research but also laid the groundwork for new joint activities and crossborder initiatives within the broader European and global research landscape.

"ACTRIS Week 2024 clearly demonstrated the strength of our community: open, ambitious, and ready to take the next steps together." Eija Juurola, ACTRIS ERIC Director General

Growing the ACTRIS Community

ACTRIS Science Conference 2024 &

In May 2024, ACTRIS hosted its first in-person international science conference, welcoming 350 participants from 29 countries to Rennes, France. Held at the historic Couvent des Jacobins, the four-day event became a landmark moment for the ACTRIS community, gathering scientists, students, and stakeholders to explore the latest advances in atmospheric, air quality, and climate research, and their connections to human health. Organised around five scientific themes, the conference offered a multidisciplinary view of atmospheric sciences — from aerosol-cloud interactions and advanced measurement techniques to data services, innovation, and societal applications. With over 280 abstracts accepted and 165 posters presented, the programme fostered dynamic scientific exchange and collaboration across the ACTRIS network and beyond.

Beyond the scientific sessions, the conference served as a true platform for engagement and outreach. Fifteen exhibitors and ten sponsors, including regional and national institutions, supported the event and facilitated dialogue between academia, industry, and public authorities. Outreach activities extended its impact beyond the research community: over 90 secondary school students and teachers took part in climate-awareness workshops and film screenings, while a public evening conference on the climate

emergency opened discussions to citizens.

The conference also reflected ACTRIS's commitment to sustainability and inclusivity. Eco-friendly practices, local food sourcing, and low-impact event design minimised the environmental footprint. Participants expressed strong satisfaction — over 98% rated their experience highly — praising the atmosphere of collaboration and the seamless blend of science and community spirit.

The ACTRIS Science Conference 2024 set a new benchmark for scientific excellence, engagement, and visibility, showcasing the power of a united community working toward a clearer, healthier atmosphere.

4

Strengthening operations, governance and sustainability

Ensuring effective governance and sustainable operations to secure ACTRIS trustworthy capacity to serve science and society

Progresses of the ACTRIS National Facility Labelling process

The process of labelling ACTRIS National Facilities is an essential part of ACTRIS operations. Through this process, the National Facilities are certified as providers of high-quality data that meets ACTRIS operational standards. All ACTRIS National Facilietis must go through the labelling process, which is carried out by the Topical Centres, Data Centre and the Head Office.

The ACTRIS Topical Centres provide operation support to the National Facilities through calibration, quality control, intercomparison campaigns, and standard operating procedures, while the Data Centre ensures that the data are easily accessible to users. The ACTRIS ERIC General Assembly formally approves the labels for ACTRIS NFs that have successfully completed the labelling process.

The labelling of ACTRIS National Facilities commenced in 2023, focusing initially on the Observational Platforms. The process will later be extended to include the Exploratory Platforms.

Table 1: Statistics of the labelling of ACTRIS National Facilities (only Observational Platforms) by 2024

Component	Not started	In process	Initially accepted	Initially accepted fraction
Aerosol In Situ	16	14	27	47%
Cloud In Situ	6	3	0	0
Reactive Trace Gases In Situ	13	10	3	12%
Aerosol Remote Sensing	8	17	12	32%
Cloud Remote Sensing	4	8	9	43%
Reactive Trace Gases Remote Sensing	4	2	2	25%
Total now	51	54	53	34%

Updates on ACTRIS ERIC Management

ACTRIS ERIC Appoints its First Director General

In 2024, ACTRIS ERIC reached a major milestone with the appointment of its first Director General, Eija Juurola. Having already served as Interim Director General since the establishment of ACTRIS ERIC in 2023, she now takes on a five-year mandate to lead the strategic and operational development of the Research Infrastructure.

Reflecting on her appointment, Juurola stated: "I am honored to be selected as the first Director General and to lead this remarkable

organization. Together, we will advance and consolidate the ACTRIS vision and mission and enhance its impact on society."

Jean-Marie Flaud, Chair of the ACTRIS ERIC General Assembly, welcomed the appointment: "Her expertise and leadership will be invaluable as we continue to expand ACTRIS capabilities and drive innovation in atmospheric science."

Change in ACTRIS Scientific Chair

Paolo Laj, whose involvement with ACTRIS began at its inception, has played a pivotal role from the early conceptualization through the preparation and implementation phases, ultimately contributing to the establishment of ACTRIS as an ERIC in April 2023. During his tenure as ACTRIS Scientific Chair over the past three years, he has significantly strengthened ACTRIS' position in the atmospheric research landscape.

Beginning in January 2025, Professor Tuukka Petäjä will assume the newly titled role of ACTRIS Scientific Advisor, serving until 2029. While the responsibilities remain aligned with the previous position, the updated title better reflects ACTRIS' evolving structure and needs. In this capacity, Tuukka will support ACTRIS' international visibility and provide strategic guidance on scientific and research developments.

New Host for the Cloud in Situ Measurements Unit

The Topical Centre for Cloud in Situ Measurements (CIS) has welcomed a new host for its Centre for Cloud Particle Properties (CCPar) unit. During the 3rd ACTRIS General Assembly, delegates approved Laboratoire de Météorologie Physique (LaMP, France) as the new host, ensuring the continued implementation of essential cloud in situ variables within ACTRIS.

Jointly operated by the Centre National de la Recherche Scientifique (CNRS) and the Université Clermont Auvergne (UCA), LaMP brings extensive expertise in in situ cloud microphysics observations and operates France's airborne platform for cloud measurements (PMA), dedicated to studying mixed-phase and ice clouds from research aircraft.

The unit has also established the national cloud probe calibration centre and demonstrated strong capabilities in cloud data processing. In addition, LaMP manages the natural wind tunnel facility at Puy de Dôme (PDD), which has hosted key experiments for fog monitor and FSSP intercomparisons.

With this new hosting arrangement, CIS looks forward to implementing the CCPar unit, enabling the quality control and standardized provision of high-value cloud variables to ACTRIS National Facilities, strengthening the infrastructure's capacity to deliver reliable, high-quality cloud observations for climate and atmospheric research.

ACTRIS Central Facilities Financial Review 2024

This review provides information on the ACTRIS Central Facilities (CF) operational activities in the financial year 2024. The ACTRIS CFs are not financially audited, and their finances are reported to the ACTRIS ERIC General Assembly for discussion and information. The auditable part of ACTRIS ERIC includes the Head Office activities operated in Finland.

The year 2024 marked the first full year of ACTRIS ERIC, following its establishment in mid-2023. In 2024, 17 member countries contributed to ACTRIS by paying Membership Contributions distributed to Central Facilities and to ACTRIS ERIC. ACTRIS operations were funded also by Host Contributions, which refer to in-kind or in-cash support provided by the CF Unit host organisations, located in 12 member countries, intended to cover approximately 70% of the operation costs. Other revenues, received through EU and national project funding, supplemented the core funding and activities.

The 2023 Membership Contributions were fully collected and released in early 2024, which meant that all the CF Units could not utilise or report these funds retroactively.

This led to some financial deviations, as the absence of 2023 Membership Contributions in the 2023 financial reports resulted in a positive outcome in many cases in the 2024 reporting. Final balancing is expected in the 2025 reporting cycle. Consequently, the Key Performance Indicators related to deviation from budgeted revenue and deviation from budget balance were negative in 2023 but showed a positive trend in 2024.

In 2024, the personnel costs represented more than half of the total operation costs, amounting to 1050 Person Months (PM). This includes the work efforts funded through both core funding and external project revenues. The use and maintenance of equipment accounted for 10% of the total costs. Travel costs remained low, at approximately 3%, as virtual, hybrid and back-to-back meetings were widely used. The remaining 30% of other costs included organisational overheads, consumables, facility spaces and event related expenses including internal meetings, ACTRIS 2024 Science Conference and technical campaigns and training sessions organized by the CF Units.

ACTRIS Central Facilities Financial Review 2024

Table 2: ACTRIS Central Facilities Financial Review 2024

ACTRIS Central Facilities		
OPERATION REVENUES	Report 2024	Report 2023
Membership Contribution	3 206 090	801 555
Host Contribution Austria	386 106	131 563
Host Contribution Belgium	275 945	98 792
Host Contribution Czech Republic	87 705	92 703
Host Contribution Finland	1 661 735	1 052 938
Host Contribution France	1 939 964	1 318 345
Host Contribution Germany	1 592 814	873 755
Host Contribution Italy	1 225 641	789 693
Host Contribution Netherlands	936 157	157 196
Host Contribution UK	0	1 933
Host Contribution Norway	582 594	572 823
Host Contribution Romania	272 590	145 026
Host Contribution Spain	299 226	241 679
Host Contribution Switzerland	358 268	57 569
Other Revenues	910 482	297 187
TOTAL REVENUES	13 735 317	6 632 757

ACTRIS Central Facilities Financial Review 2024

Table 3: ACTRIS Central Facilities Financial Review 2024

ACTRIS Central Facilities		
OPERATION COSTS		
Personnel Costs	7 034 006	4 370 626
Equipment Costs	1 249 435	806 321
Travel Costs	392 810	454 548
Other Costs	4 025 052	2 077 044
TOTAL COSTS	12 701 302	7 708 539
TOTAL COSTS	12 701 302	7 708 539
TOTAL COSTS BALANCE REVENUES - COSTS	12 701 302 1 034 015	7 708 539 -1 075 782
BALANCE REVENUES - COSTS	1 034 015	-1 075 782

MEMBERSHIP CONTRIBUTIONS 2024

ACTRIS Highlights 2024

A 2024 financial review for each ACTRIS Central Facility (Head Office, Data Centre, Centre for Aerosol In Situ (CAIS-ECAC), Centre for Aerosol Remote Sensing (CARS), Centre for Cloud In Situ (CIS), Centre for Cloud Remote Sensing (CCRES), Centre for Reactive Trace Gases In Situ (CiGas), Centre for Reactive Trace Gases Remote Sensing (CREGARS).

Head Office

There are three Units in Finland and one in Italy.

HEAD OFFICE		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	261 391	193 593
Host Contribution Finland	870 847	535 200
Host Contribution Italy	255 640	131 860
Other Revenues	308 646	2 121
TOTAL REVENUES	1 696 524	862 774
Operation COSTS		
Personnel Costs	757 792	402 023
Equipment Costs	18 782	2 823
Travel Costs	92 071	34 422
Other Costs	625 695	321 760
TOTAL COSTS	1 494 340	761 028
BALANCE Operation Revenues - Costs	202 184	101 746
KPI Deviation Budget Balance	12%	12%
KPI Deviation Budgeted Revenue	21%	-7%
Operation Person Months	122	54

Data Centre (DC)

There were ten financial Units in DC of which three consisted of eight Sub-Units.

DATA CENTRE		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	586 989	416 259
Host Contribution Finland	443 282	252 852
Host Contribution France	636 760	516 034
Host Contribution Italy	463 804	333 069
Host Contribution Norway	582 594	572 823
Host Contribution Spain	0	0
Other Revenues	187 138	0
TOTAL REVENUES	2 900 567	2 091 037
Operation COSTS		
Personnel Costs	1 595 329	1 159 574
Equipment Costs	172 875	179 459
Travel Costs	83 815	52 583
Other Costs	1 048 548	830 714
TOTAL COSTS	2 900 567	2 222 330
Balance Operation Revenues - Costs	0	-131 293
KPI Deviation Budget Balance	0%	-6%
KPI Deviation Budgeted Revenue	0%	1%
Operation Person Months	202	168

Centre for Aerosol In Situ Measurements – European Centre for Aerosol Calibration and Characterisation (CAIS-ECAC).

There were six Units in CAIS-ECAC of which one consisted of three Sub-Units.

CAIS-ECAC		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	619 134	46 470
Host Contribution Czech Republic	87 705	92 703
Host Contribution Finland	127 655	78 157
Host Contribution France	288 490	197 763
Host Contribution Germany	510 799	333 209
Host Contribution Italy	108 536	76 385
Other Revenues	57 814	0
TOTAL REVENUES	1 800 133	824 687
OPERATION COSTS		
Personnel Costs	795 035	490 418
Equipment Costs	203 809	145 879
Travel Costs	41 285	30 494
Other Costs	523 827	213 737
TOTAL COSTS	1 563 956	880 528
BALANCE REVENUES - COSTS	236 177	-55 841
KPI Deviation Budget Balance	13%	-7%
KPI Deviation Budgeted Revenue	11%	-20%
PERSON MONTHS	136	98

ACTRIS Highlights 2024

Centre for Aerosol Remote Sensing (CARS)

There were nine Units in CARS of which one consisted of two Sub-Units.

CARS		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	535 815	0
Host Contribution France	317 950	177 860
Host Contribution Germany	206 590	75 657
Host Contribution Italy	397 660	248 380
Host Contribution Romania	272 590	145 026
Host Contribution Spain	299 226	241 679
Host Contribution Switzerland	275 300	0
Other Revenues	275 846	49 098
TOTAL REVENUES	2 580 978	937 700
Operation COSTS		
Personnel Costs	1 406 056	758 799
Equipment Costs	346 387	182 024
Travel Costs	48 226	26 724
Other Costs	462 290	287 303
TOTAL COSTS	2 262 959	1 254 850
Balance Operation Revenues - Costs	318 019	-317 150
KPI Deviation Budget Balance	12%	-34%
KPI Deviation Budgeted Revenue	24%	-27%
Operation Person Months	279	189

Centre for Cloud In Situ Measurements (CIS)

There were four Units in CIS of which one consisted of two Sub-Units. One Unit was elected in mid-2024 and did not perform operational activities yet in 2024.

CIS		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	76 374	0
Host Contribution Austria	108 156	0
Host Contribution Germany	232 884	0
Host Contribution NN	0	0
Other Revenues	0	0
TOTAL REVENUES	417 414	0
Operation COSTS		
Personnel Costs	273 729	0
Equipment Costs	3 860	0
Travel Costs	9 503	0
Other Costs	130 322	0
TOTAL COSTS	417 414	0%
Balance Operation Revenues - Costs	0	0
KPI Deviation Budget Balance	0%	
KPI Deviation Budgeted Revenue	20%	
Operation Person Months	34	0

ACTRIS Highlights 2024

Centre for Cloud Remote Sensing (CCRES)

There were four Units in CCRES of which one consisted of two Sub-Units.

CCRES		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	257 914	9 705
Host Contribution Finland	55 263	42 400
Host Contribution France	273 420	156 661
Host Contribution Germany	72 197	25 239
Host Contribution Netherlands	93 475	92 030
Host Contribution UK	0	1 933
Other Revenues	36 730	119 065
TOTAL REVENUES	788 999	447 033
Operation COSTS		
Personnel Costs	425 640	280 143
Equipment Costs	17 681	52 616
Travel Costs	15 222	10 659
Other Costs	195 993	106 254
TOTAL COSTS	654 536	449 672
Balance Operation Revenues - Costs	134 463	-2 639
KPI Deviation Budget Balance	17%	-1%
KPI Deviation Budgeted Revenue	-1%	-22%
Operation Person Months	69	45

Centre for Reactive Trace Gases In Situ Measurements (CiGas)

There were six Units in CiGas.

CiGas		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	597 687	0
Host Contribution Finland	164 688	144 329
Host Contribution France	238 449	217 136
Host Contribution Germany	544 667	419 850
Host Contribution Switzerland	82 968	57 569
Other Revenues	21 416	60 292
TOTAL REVENUES	1 649 875	899 176
Operation COSTS		
Personnel Costs	861 275	628 441
Equipment Costs	89 382	40 388
Travel Costs	46 328	29 372
Other Costs	572 952	273 707
TOTAL COSTS	1 569 937	971 908
Balance Operation Revenues - Costs	79 938	-72 732
KPI Deviation Budget Balance	5%	-8%
KPI Deviation Budgeted Revenue	5%	-13%
Operation Person Months	121	101

Centre for Reactive Trace Gases Remote Sensing (CREGARS)

There were eight Units in CREGARS of which one consisted of two Sub-Units.

CREGARS		
Operation REVENUES	Report 2024	Report 2023
Membership Contribution	207 552	135 528
Host Contribution Austria	277 950	131 563
Host Contribution Belgium	275 945	98 792
Host Contribution France	184 895	52 890
Host Contribution Germany	25 677	19 800
Host Contribution Netherlands	842 682	65 166
Other Revenues	22 891	66 611
TOTAL REVENUES	1 837 592	570 350
Operation COSTS		
Personnel Costs	919 150	408 817
Equipment Costs	396 658	14 108
Travel Costs	56 359	17 715
Other Costs	465 424	129 711
TOTAL COSTS	1 837 592	570 351
Balance Operation Revenues - Costs	0	-1
KPI Deviation Budget Balance	0%	0%
KPI Deviation Budgeted Revenue	63%	-27%
Operation Person Months	88	48

Annex II - International education and training activities

- 1- ACTRIS Aerosol School at NAOK (14.4. 20.4. 2024), 16 participants.
- 2- ACTRIS training course "Atmospheric observations of aerosols, clouds and trace gases", Helsinki/online, 20-24.5.2024, organized by the University of Helsinki.
- 3- AGORA Aerosol Training course 'Characterization of atmospheric aerosol using in-situ and remote sensing techniques' organised by the Andalusian Global ObseRvatory of the Atmosphere (AGORA) in Granada, Spain. The school was attended by 35 participants.
- 4- Autumn School "Analysis of Atmosphere-Surface Interactions and Feedbacks", Hyytiälä forestry field station, Finland, 7.-18.10.2024, organized by the University of Helsinki.
- 5- Autumn School organised by CARE-C at the Cyprus Institute's premises in Nicosia on 11-15.11.2024.
- 6- HErZ 2024 Summer School on Modern Methods for Atmospheric Profiling, organised by the JOYCE consortium (Research Center Jülich, Germany) in August 2024. The school gathered over 50 international participants.

- 7- Intensive course 'Formation and Growth of Atmospheric Aerosols', Hyytiälä forestry field station, Finland 12.-22.8.2024 in Hyytiälä, Finland, organized by the University of Helsinki.
- 8- Maïdo Observatory Summer School (MOSS) organised at La Réunion, France, on 18-22.11.2024. There were 40 participants, mostly PhD students, postdoctoral and young scientists. https://realistic.univ-reunion.fr/maido-observatory-summer-school-2024/
- 9- Training "Lidar Tools Training" on new lidar data analysis tool EMERALD for the ARS sites personnel in Poland (University of Warsaw, University of Wroclaw, and University of Silesia) organized by the University of Warsaw.
- 10- Winter School "Advanced analysis of atmosphere-surface interactions and feedbacks", Hyytiälä forestry field station, Finland, 4-15.3.2024, organized by the University of Helsinki.

Name of the Event	Organizer	Date	Place	No of attendees
ENVRINNOV KOM	CARE-C	19-21.01.2024	Nicosia, Cyprus	40
ASC Meeting	BUW QUAREC-NF	19.03.2024	Wuppertal, Germany	36
ATMO-ACCESS Annual Meeting	BUW QUAREC-NF	19-21.03.2024	Wuppertal, Germany	70
GIVE KOM	LMU, TROPOS, DLR	25-27.03.2024	LMU Munich, Germany	45
MUOAA 2024	IRCELYON, PhLAM, EPOC, UM6P, ICARE- HELIOS	1-5.04.2024	Cargèse, France	80
Science Fair	The Cyprus Institute	17.04.2024	Nicosia, Cyprus	6000
EGU 2024	ENVRI Community	14-19.04.2024	Vienna, Austria	3000
ACTRIS Spain Annual meeting	Univ.Granada.IIS TA	22-23.04.2024	Granada, Spain	16
ACTRIS-D Annual meeting	DWD + GUF	6-8.05.2024	Offenbach, Germany	40
ACTRIS Science Conference 2024	ACTRIS ERIC HO, ACTRIS France	13-16.05.2024	Rennes, France	350
Air ion and aerosol workshop	INAR, University of Helsinki and Tartu University	27-29.05.2024	Puhajärve, Estonia	35
3rd ACTRIS ERIC General Assembly	ACTRIS HO, Geosphere	28-29.05.2024	Vienna, Austria	30
ACTRIS2BE KO meeting	BIRA-IASB	09.06.2024	Brussels, Belgium	20
Scientific Day of SIRTA	IPSL	12.06.2024	Palaiseau, France	100
Earlinet meeting	Earlinet Council	23.06.2024	Landshut, Germany	50

Name of the Event	Organizer	Date	Place	# Attendees
Innovation in Atmospheric Measurement Techniques workshop	CARE-C, ACTRIS, IAGOS, ICOS	27.06.2024	Online	129
Life Lidar Demo	University of Warsaw	27-29.06.2024	Warsaw, Poland	200
RWS thematic morning	TNO	08.07.2024	Delft, Netherlands	20
HErZ VITAL I Campaign	JOYCE-NF consortium	8.2024	Jülich, Germany	20
ACTRIS-CH Annual Meeting	PMOD-WRC	22.08.2024	Davos, Switzerland	15
ACTRIS Norway Annual Meeting	NILU	26-27.08.2024	Birkenes, Norway	22
European Aerosol Conference	FAAR, Finnish Aerosol Foundation, ACTRIS-FI	25-30.08.2024	Tampere, Finland	1000
ICOS Science Conference	ACTRIS HO, CNRS	10-12.09.2024	Versailles, France	400
IAGOS 30th Anniversary	ACTRIS HO, CNRS	19.09.2024	Toulouse, France	100
RI-URBANS 3rd Science Meeting	ACTRIS HO, University of Helsinki and FMI	25-26.09.2024	Helsinki, Finland	50
Workshop on ACTRIS's scientific impact: preliminary results based on bibliometric analysis	CNR IMAA	26.09.2024	Potenza, Italy	50

Name of the Event	Organizer	Date	Place	No of attendees
23rd International Conference and School on Quantum Electronics "Laser Physics and Applications"	Institute of Electronics, Bulgarian Academy of Sciences	23-27.09.2024	Ravda, Bulgaria	>100
CAMPOLA 2024	UM6P, ICARE- HELIOS	2-4.10.2024	Ben Guerir, Maroc	60
OKO ACTRIS seminary for internal Stakeholders	ACTRIS-CZ	8-9.10.2024	Váňův Statek, Vysočina, Czech Republic	45
ACTRIS FR workshop 2024	CNRS	15-18.10.2024	St Pierre D'Oleron, France	74
XIII Konferencja Naukowa "Ochrona Powietrza w Teorii i Praktyce	Institute of Environmental Engineering of the Polish Academy of Sciences	15-18.10.2024	Zakopane, Poland	80
Launch of the ACTRIS-UBB Platform	UBB	21.10.2024	Cluj-Napoca, Romania	50
Air Quality Directive Workshop	INOE, UBB	21.10.2024	Cluj-Napoca, Romania	30
ACTRIS-RO meeting	UBB	21.10.2024	Cluj-Napoca, Romania	16
ACTRIS-CZ SAB meeting	ACTRIS-CZ	05.11.2024	Matera, Italy	15
ACTRIS WEEK 2024	CNR IMAA, ACTRIS ERIC HO	4-7.11.2024	Matera, Italy	200

Name of the Event	Organizer	Date	Place	No of attendees
CARS ARES workshop	CNR-IMAA	08.11.2024	Matera, Italy	90
CARGO ACT meeting	CNR-IMAA	08.11.2024	Matera, Italy	30
Sino-French Joint Workshop on Atmospheric Environment	Many RPOs involved	6-10.11.2024	Bordeaux, France	80
Annual Conference of the Czech Aerosol Society, Ovzduší v ČASe	CAS, RECETOX, ACTRIS-CZ	11-13.11.2024	OREA Resort Devět Skal Vysočina, Sněžné, CzR	75
ERATOTHENES Info DAY	ERATOSTHENES CoE	14.11.2024	Limassol	200
Obs4Clim Annual Meeting	CNRS, UCA	18-19.11.2024	Clermont Ferrand, France	35
4th ACTRIS ERIC General Assembly	ACTRIS HO	25-26.11.2024	Madrid, Spain	30
ICRI 2024	ACTRIS HO	3-5.12.2014	Brisbane, Australia	300
AGU 2024	ACTRIS HO	9-13.12.2024	Washington DC, USA	20000

Annex IV - Glossary

ACTRIS – The Pan-European distributed Aerosol, Clouds and Trace Gases Research Infrastructure which produces high-quality data documenting short-lived atmospheric constituents and processes leading to their variability in natural and controlled atmospheres and integrates, harmonizes and distributes datasets, activities and services provided by Central Facilities and National Facilities.

ACTRIS data – the data produced by the ACTRIS National Facilities complying with the procedures established within ACTRIS and is defined in ACTRIS data policy as accepted and amended by the decisions of the Interim ACTRIS Council and later General Assembly.

ACTRIS ERIC – The Aerosol, Clouds and Trace Gases Research Infrastructure European Research Infrastructure Consortium is the legal entity that coordinates and facilitates the operation of ACTRIS at the European level, ensuring long-term sustainability, governance, and strategic development of the research infrastructure. ACTRIS ERIC includes all functions of ACTRIS Head Office and part of the Data Centre. The statutory seat of ACTRIS ERIC is in Helsinki, Finland.

ACTRIS label – The "ACTRIS National Facility" label is granted through the ACTRIS labelling process to Observational and Exploratory Platforms that comply with the ACTRIS standards.

ACTRIS labelling process – proves the operational capacities of the National Facilities and ensures the high quality of ACTRIS data by granting the label "ACTRIS National Facility" to Observational and Exploratory Platforms that comply with the ACTRIS standards.

ACTRIS observational components - ACTRIS observational components refer to the classification of measurement techniques. ACTRIS has six observational components: aerosol in situ (AIS), cloud in situ (CIS), reactive trace gases in situ (RTGIS), aerosol remote sensing (ARS), cloud remote sensing (CRS), and reactive trace gases remote sensing (RTGRS).

Atmospheric Simulation Chamber Committee (ASCC) - supports the operation of ACTRIS atmospheric simulation chambers on matters related to procedures, quality, consistency and relevance.

Central Facility (CF) – a European-level ACTRIS component, either Head Office, Data Centre or Topical Centre, that offers ACTRIS data or research services and other services to users as well as operation support to National Facilities.

Central Facility (CF) Leader – the person responsible for leading, managing, developing and implementing the activities of a Central Facility according to the agreed ACTRIS policies and rules.

Central Facility (CF) Unit – part of a Central Facility located at and operated by a research performing organization (RPO) or by ACTRIS ERIC.

Central Facility (CF) Unit Head – the person responsible for the coordination and representation of a Central Facility Unit.

Central Facility (CF) Management Board – an internal Management Board to support the implementation of CF tasks and the daily CF operation and management. Each Central Facility (DC and TCs) has this board and it is chaired by the CF leader and includes the Head of each CF Unit.

Centre for Aerosol In Situ Measurements (CAIS ECAC) – one of the six ACTRIS Topical Centres. The European Centre for Aerosol Calibration and Characterization (ECAC) acts as the ACTRIS Centre for Aerosol In Situ measurements (CAIS), whose mission is to offer operation support to ACTRIS National Facilities operating instrumentation for aerosol in situ measurements and specialized services to a wide range of users.

Centre for Aerosol Remote Sensing (CARS) – one of the six ACTRIS Topical Centres. The mission of the CARS is to offer operation support to ACTRIS National Facilities operating aerosol remote sensing instrumentation and specialized services to a wide range of users.

Centre for Cloud In Situ Measurements (CIS) – one of the six ACTRIS Topical Centres. The mission of the CIS is to offer operational support to ACTRIS National Facilities operating instrumentation for cloud in situ measurements and specialized services to wide range of users.

Centre for Cloud Remote Sensing (CCRES) – one of the six ACTRIS Topical Centres. The mission of the CCRES is to offer operational support to ACTRIS National Facilities operating cloud remote sensing instrumentation and specialized services to a wide range of users.

Centre for Reactive Trace Gases In Situ Measurements (CiGas) – One of the six ACTRIS Topical Centres. The mission of CiGas is to offer operational support to ACTRIS National Facilities operating instrumentation for reactive trace gases in situ measurements and specialized services to a wide range of users.

Centre for Reactive Trace Gases Remote Sensing (CREGARS) – One of the six ACTRIS Topical Centres. The mission of CREGARS is to offer operational support to ACTRIS National Facilities operating reactive trace gases remote sensing instrumentation and specialized services to a wide range of users.

Cooperation Agreement – an agreement between ACTRIS ERIC and a National Facility or between ACTRIS ERIC and a Central Facility which is not included in ACTRIS ERIC.

Data Centre (DC) – the Central Facility responsible for ACTRIS data curation, preservation, and distribution of the data, value-added products and tools, and hosting the ACTRIS data portal that is a single-entry point for all ACTRIS data.

Director General (DG) – the legal representative of ACTRIS ERIC appointed by the General Assembly; responsible for the implementation of the decisions by the General Assembly and ensure the scientific and strategic development of ACTRIS.

Annex IV - Glossary

Ethical Advisory Board – consists of independent external members appointed by the General Assembly; the board provides feedback and makes recommendations to develop the ethical aspects of ACTRIS ERIC and the research infrastructure activities.

Exploratory Platform – ACTRIS National Facility; an atmospheric simulation chamber, a laboratory or a mobile platform that performs dedicated experiments and provides quality-controlled data on atmospheric compounds, processes, events or regions of relevance by following common standards.

Financial Committee – consists of expert members appointed by the General Assembly; the committee supports on matters related to the management of financial planning of ACTRIS ERIC as an advisory body of GA.

General Assembly (GA) – the governing body of ACTRIS ERIC, composed of delegates of members, permanent observers and observers.

Head Office (HO) – the Central Facility responsible for coordinating and representing ACTRIS as well as enabling ACTRIS services. HO supports the work of the General Assembly, the advisory bodies and committees of the ACTRIS ERIC.

Host country – a country where a Central Facility unit is located and operated.

Host contribution – support provided by members or permanent observers for the functioning of the Central Facilities that are not part of ACTRIS ERIC, hosted in their own country.

Host premium contribution – the support provided by ACTRIS ERIC members and permanent observers for the functioning of the Central Facilities that are part of ACTRIS ERIC, hosted in their own country.

In situ measurements – in the context of ACTRIS, in situ measurements of aerosol, cloud, and reactive-trace-gas properties refer to techniques that characterise a sampling point. They can be performed from Observational Platform near the surface, from mobile surface-based or airborne platforms, and in atmospheric simulation chambers and laboratories. ACTRIS has three in situ observational components (AIS, CIS, RTGIS).

ACTRIS Scientific Advisor – an expert appointed by the Director General to advise ACTRIS on scientific matters, supporting the development and advancement of ACTRIS research and services.

Member of ACTRIS ERIC – a Member State of the European Union, associated country, third country other than associated country, or an intergovernmental organization that has joined ACTRIS ERIC. The rules of ACTRIS membership and obligations and rights of members are defined in the ACTRIS ERIC statutes.

Membership contribution – a cash contribution to ACTRIS ERIC to be collected from a member, permanent observer or observer according to the rules defined in the ACTRIS Internal Financial Rules. ACTRIS ERIC is responsible for allocating the agreed contributions to each Central Facility.

National Contact Person (NCP) – a person nominated by the countries that have shown their commitment to ACTRIS at organizational or state level. The ACTRIS National Contact Person is responsible for organizing the coordination of the ACTRIS community at the national level and is responsible for ensuring the proper dissemination and information flow from the European ACTRIS activities to the national science communities and the relevant national stakeholders.

National Facility (NF) – an observational or exploratory platform which has a contractual relationship with ACTRIS ERIC and which provides data and/or physical/remote access to its premises. National Facilities are developed, managed and operated by national Research Performing Organisations.

National Facility Principal Investigator (NF PI) – The scientist in charge of the measurements performed at a National Facility, usually also the contact person of the facility.

National Facility (NF) Technical and Scientific Forum – a highly technical and operative forum to develop the RI and ensure the connection of scientific expertise and technological development. It as an advisory body that may provide recommendations to the RI Committee or to the ACTRIS community. The forum is inclusive; the forum is open for the whole ACTRIS community and ACTRIS users.

Observational Platform – ACTRIS National Facility; a fixed ground-based station acquiring reliable high-quality data on the variability of aerosol, clouds and trace gases and their complex interactions by applying standardized remote sensing and in situ measurement techniques. Observational Platforms may also provide physical and/or remote access to users.

Observer of ACTRIS ERIC – a Member State of the European Union, associated country, third country other than associated country, or an intergovernmental organisation that has joined ACTRIS ERIC as an observer or permanent observer. The rules of ACTRIS observership and obligations and rights of observers are defined in the ACTRIS ERIC statutes.

Physical access – physical access to an ACTRIS Central Facility or National Facility. Centrally managed via the ACTRIS Head Office's Service and Access Management Unit, following the ACTRIS Access and Service Policy.

Remote access – access to an ACTRIS Central Facility or National Facility without users physically visiting the facility.

Remote sensing measurements – in the context of ACTRIS, remote sensing measurements refer to active and passive atmospheric remote-sensing techniques for the observation of aerosol, clouds, and trace gases. They can be applied at observational sites and on mobile surfacebased platforms. ACTRIS has three remote sensing observational components (ARS, CRS, RTGRS).

Research Infrastructure Committee (RI Committee) – the committee supports the Director General on matters related to the Research Infrastructure to ensure consistency, coherence, and sustainability of the operations of the Research Infrastructure.

Annex IV - Glossary

The RI Committee is convened by the Director General and shall have representatives both from the Central Facilities and National Facilities.

Scientific and Innovation Advisory Board (SIAB) – consists of independent external members appointed by the General Assembly; the board monitors the scientific and operative quality of ACTRIS and advises to development of ACTRIS ERIC and the research

infrastructure activities in the operation phase.

Science and User Access Forum – a focused space dedicated to all matters related to the physical and remote access of users to ACTRIS services and for users to interact with ACTRIS.

Service and Access Management Unit (SAMU) – a Unit of ACTRIS Head Office facilitating the access to ACTRIS services.

Topical Centre (TC) – a Central Facility supporting the operation of the National Facilities and offering services and operation support for quality assurance and quality control of ACTRIS measurements and data (including training and knowledge transfer, calibration, quality assurance/quality control tools, and development of standard operation and evaluation procedures).

Six Topical Centres are set up to respond to the scientific and technical needs of ACTRIS, each with a particular focus on either remote sensing (from the ground) or in situ (near-surface) measurements:

- CAIS-ECAC Centre for Aerosol In Situ Measurements European Centre for Aerosol Calibration and Characterization
- CARS Centre for Aerosol Remote Sensing
- **CIS** Centre for Cloud In Situ Measurements
- **CCRES** Centre for Cloud Remote Sensing
- CiGas Centre for Reactive Trace Gases In Situ Measurements
- CREGARS Centre for Reactive Trace Gases Remote Sensing

User – a person, a team, or an institution making use of ACTRIS data or other ACTRIS services, including access to ACTRIS facilities.

Virtual access – wide and free access to ACTRIS data and digital tools provided by DC through the ACTRIS website.

ACTRIS data and service specific glossary

ACTRIS data levels:

- level 0 data: Raw sensor output. Native resolution, metadata necessary for next level.
- **level 1 data**: Calibrated and quality assured data with minimum level of quality control.
- level 2 data: Approved and fully quality controlled ACTRIS data product or geophysical variable.
- level 3 data: Elaborated ACTRIS data products derived by post-processing of ACTRIS Level 0 -1 -2 data, and data from other sources. The data can be gridded or not.

Data curation – the activity that stores, manages and ensures access to all persistent data sets produced within the infrastructure.

Data originator – entity operating instruments at a National Facility or Topical Centre, resulting in ACTRIS data and delivering ACTRIS data to the Data Centre.

Data provider – the Data Centre offering the ACTRIS data and value-added data products and tools to users.

Digital tools – tailored codes and software for processing and visualization of ACTRIS data, production of ACTRIS data products, and for data analysis and research.

Data traceability – an unbroken chain of uniquely identified process steps leading from raw data to any kind of processed data, where identification of process steps follows the data.

Measurement traceability – an unbroken chain of comparisons relating an instrument's measurements to a known standard, in the ideal case SI units.

Quality assurance and control – quality assurance is process-oriented and focuses on defect prevention and quality control is product-oriented and focuses on defect identification:

- Quality Assurance (QA) the process or set of processes used to ensure the quality of a product (e.g. data series, instrument, sample, measured value of a variable, etc.).
- Quality Control (QC) the process and activities of ensuring products and services meet the expectations.

Synthesis product – data product not under direct ACTRIS responsibility from e.g. research activities, citizen science, for which ACTRIS offers repository and access.

Variables – almost 135 different atmospheric variables are measured within ACTRIS. The variables are listed in the ACTRIS data management plan.

Annex V - 2024 Delegates of the ACTRIS ERIC General Assembly

Country	Name	
Austria	Karolina Begusch-Pfefferkorn	
Belgium	Aline van der Werf; Verreet Gert	
Bulgaria	Kalin Mutavchiev; Tanja Dreischuh	
Czech Republic	Zdimal Vladimir; Jan Svehla	
Cyprus	Michalis Mouskos; Chrysanthos Savvides	
Denmark	Mads Rugaard Christensen	
Finland	Petteri Kauppinen; Hannele Korhonen	
France	Jean Marie Flaud; Jérôme Rose	
Germany	Jonas Esche; Jochen Elberskirch	
Italy	Mauro Bertelletti; Gelsomina Pappalardo	
Netherlands	Arnoud Apituley	
Norway	Odd Ivar Eriksen	
Poland	Michał Rybiński; Iwona Stachlewska	
Romania	Viorel Vulturescu; Beatrice Păduroiu	
Spain	María Vallejo Abascal	
Sweden	Sara Moa; Ulf Jonsell	
Switzerland	Maarten Lupker	

Annex VI - Scientific and Innovation Advisory Board

Name	Affiliation		
Leonard Barrie (SIAB Chair)	McGill University, Stockholm University, The Cyprus Institute		
Valérie Thouret	European Research Infrastructure In-service Aircraft for Global Observing System (IAGOS- AISBL)		
Øystein Hov	The Norwegian Academy of Science and Letters		
Vincent-Henri Peuch	Copernicus Atmosphere Monitoring Service (CAMS), European Centre for Medium-Range Weather Forecasts (ECMWF)		
Carlo Rizzuto	CERIC-ERIC (Central European Research Infrastructure Consortium)		
Oksana Tarasova	World Meteorological Organization (WMO)		

Annex VII - Projects

Logo	Name	Period	Website
ACTRIS Germany	ACTRIS-D	2021-2026	https://www.tropos.de /en/research/actris-d
ACTRIS Norway	ACTRIS-Norway	2022-2026	https://actris.no/
	AeroPan	2022-2026	https://www.igf.fuw.ed u.pl/en/projects/186/
AIRSENSE	AIRSENSE	2023-2024	https://www.grasp- earth.com/portfolio/ai rsense/
ATMO ACCESS Access to Atmospheric Research Focilities	ATMO-ACCESS	2021-2025	https://www.atmo- access.eu
Atmosphere Monitoring Service	CAMS2_ 21a	2023-2026	Near-Real-Time provision of aerosol and reactive species from ACTRIS and EMEP surface observation networks
Atmosphere Monitoring Service Communication	CAMS2_21b	2023-2026	https://ciao.imaa.cnr.it /research/projects/ca ms-21b/
Atmosphere Monitoring Service Topic Largest Copenius Cop	CAMS2_27_BIRA-IASB	2022-2027	https://atmosphere.co pernicus.eu/provision- improved-access- ndacc-observations
CARGO	CARGO-ACT	2024-2027	https://www.cargo- act.eu
CERTAINTY CLOUD-AEROSOL INTERACTIONS AS 6 THER MARKETS IN THE EARTH SYSTEM	CERTAINTY	2024-2028	https://certainty-aci.eu
Crean	CleanCloud	2024-2027	https://projects.au.dk/ cleancloud
Personal	EarthCARE	Launched in 2024	https://earth.esa.int/e ogateway/missions/ea rthcare

Annex VII - Projects - Ongoing

Logo	Acronym	Period	Website
ENVRI-Hub NEXT	ENVRIhub-NEXT	2024-2027	https://envri.eu/envri- hub-next/
ENVRINNO\	ENVRINNOV	2024-2027	https://envri.eu/envrin nov/
FORCeS	FORCeS	2024-2028	https://eu-polarin.eu
FRM4DOAS	FRM4DOAS	2021-2025	https://frm4doas.aero nomie.be
* HARMONIA	HARMONIA	2022-2026	https://harmonia- cost.eu
RISCC	IRISCC	2024-2028	https://www.iriscc.eu
@ITINERIS	ITINERIS	2022-2025	https://itineris.cnr.it
MI-TRAP	Mi-TRAP	2024-2027	https://mitrap- project.eu/
NET4 CITIES	Net4Cities	2024-2027	https://www.net4cities .eu
Système d'Observation Intégré pour l'Atmosphère	OBS4CLIM	2021-2029	https://www.obs4clim. fr
	Pangea4CalVal	2024-2027	https://pangea4calval. space.noa.gr
PAREMPI	PAREMPI	2023-2025	https://parempi.eu
POLARIN POLA REARCH INFRATIOUR INFRATIOUR POLAR REARCH INFRATIOUR REARCH INFRATION REARCH	POLARIN	2024-2028	https://eu-polarin.eu
R ALAIL URBANS	RI-URBANS	2021-2025	https://riurbans.eu
• VILMA •	VILMA	2022-2029	https://www.helsinki.fi /en/researchgroups/vi lma

- Aas, W., Fagerli, H., Alastuey, A., Cavalli, F., Degorska, A., Feigenspan, S., Brenna, H., Gliß, J., Heinesen, D., Hueglin, C., Holubová, A., Jaffrezo, J.L., Mortier, A., Murovec, M., Putaud, J.P., Rüdige, J., Simpson, D., Solberg, S., Tsyro, S., Tørseth, K., Yttri, K.E., 2024: Trends in Air Pollution in Europe, 2000–2019. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.230237.
- Achebak, H., Garatachea, R., Pay, M.T., Jorba, O., Guevara, M., García-Pando, C.P. and Ballester, J., 2024. Geographic sources of ozone air pollution and mortality burden in Europe. Nature Medicine, 30(6), p.1732.
- Adam, M., & Marenco, F., 2024: Overlap correction function based on multi-angle measurements: the case of EMORAL lidar. Optics Express, 32(7), 11022– 1040. https://doi.org/10.1364/OE.507433
- Alage, S., Michoud, V., Harb, S., Picquet-Varrault, B., Cirtog, M., Kumar, A., Rissanen, M. and Cantrell, C., 2024. A Nitrate Ion Chemical Ionization Atmospheric Pressure interface Time-of-Flight Mass Spectrometer (NO 3- ToFCIMS): calibration and sensitivity study. Atmospheric Measurement Techniques Discussions, 2024, pp.1-31.
- Alfadhel, I., Peralta-Maraver, I., Reche, I., Sánchez-Cañete, E. P., Aranda-Barranco, S., Rodríguez-Velasco, E., ... & Serrano-Ortiz, P. (2024). Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake. Biogeosciences, 21(22), 5117-5129. doi: 10.5194/bg-21-5117-2024
- Alfaro, C., Porru, S., Barberá-Riera, M., Esplugues, A., Galindo, N., Carrasco, P., Aparicio, E., Barneo-Muñoz, M., Estarlich, M., Esteve-Cano, V., Ballester, F., Rebagliato, M., Iñiguez, C., Bellido-Blasco, J.B., de Llanos, R., Delgado-Saborit, J.M., 2024. SARS-CoV-2 detection in aerosol from community indoor environments. Building and Environment 261, 111723.
- Almansa, A. F., Barreto, Á., Kouremeti, N., González, R., Masoom, A., Toledano, C., Gröbner, J., García, R. D., González, Y., Kazadzis, S., Victori, S., Álvarez, Ó., Maupin, F., Carreño, V., Cachorro, V. E., & Cuevas, E. (2024). The Langley ratio method, a new approach for transferring photometer calibration from direct sun measurements. Atmos. Meas. Tech., 17, 659-675. https://doi.org/10.5194/amt-17-659-2024
- Amato, F., B.L. van Drooge, J.L. Jaffrezo, O. Favez, C. Colombi, E. Cuccia, C. Rechea F. Ippolito, S. Ridolfo, R. Lara, G. Uzu, T. V. D. Ngoc, P. Dominutti, S. Darfeuil, A. Albinet, D. Srivastava, A. Karanasiou, G. Lanzani, A. Alastuey, X. Querol (2024). Aerosol source apportionment uncertainty linked to the choice of input chemical componentes. Environment International, Volume 184, 2024, 108441, ISSN 0160-4120, https://doi.org/10.1016/j.envint.2024.108441.
- Andersen, S. T.; McGillen, M. R.; Xue, C.; Seubert, T.; Dewald, P.; Türk, G. N. T. E.; Schuladen, J.; Denjean, C.; Etienne, J.-C.; Garrouste, O.; Jamar, M.; Harb, S.; Cirtog, M.; Michoud, V.; Cazaunau, M.; Bergé, A.; Cantrell, C.; Dusanter, S.; Picquet-Varrault, B.; Kukui, A.; Mellouki, A.; Carpenter, L. J.; Lelieveld, J.; Crowley, J. N. Measurement Report: Sources, Sinks, and Lifetime of NO x in a Suburban Temperate Forest at Night. Atmos. Chem. Phys. 2024, 24 (20), 11603–11618. https://doi.org/10.5194/acp-24-11603-2024
- Andriamahefa, M.H., Bourdin, V., Migan-Dubois, A., Mininger, X., Parra, J. & Badosa, J. (2024). Optimized Control of a Dual-Axis PV Solar Tracker using a Radiometric Cube and an Artificial Neural Network. (pp. 1296-1301). IEEE. https://doi.org/10.1109/PVSC57443.2024.10749620

- Aryasree, S., Kandler, K., Benker, N., Walser, A., Tipka, A., Dollner, M., ... & Weinzierl, B. (2024). Vertical Variability in morphology, chemistry and optical properties of the transported Saharan air layer measured from Cape Verde and the Caribbean. Royal Society Open Science, 11(11), 231433. https://doi.org/10.1098/rsos.231433
- Astray B., Šípková A., Baragaño D., Pechar J., Krejci R., Komárek M., Chrastný V.: Measuring Pb isotope ratios in fresh snow filtrate refines the apportioning of contaminant sources in the Arctic, Environmental Pollution, https://doi.org/10.1016/j.envpol.2024.123457
- Bazo, E., Martins, J. V., Perez-Ramirez, D., Valenzuela, A., Titos, G., Cazorla, A., ... & Olmo, F. J. (2024). Optimization of the Polarized Imaging Nephelometer (PI-Neph) for continuous monitoring of multiwavelength aerosol phase functions in support of space polarimetry missions. Atmospheric Environment, 316, 120181. doi: 10.1016/j.atmosenv.2023.120181
- Bedoya-Velásquez, A. E., Ceolato, R., Titos, G., Bravo-Aranda, J. A., Casans, A., Patrón, D., ... & Alados-Arboledas, L. (2024). Synergy between Short-Range Lidar and In Situ Instruments for Determining the Atmospheric Boundary Layer Lidar Ratio. Remote Sensing, 16(9), 1583. doi: 10.3390/rs16091583
- Bègue, N., Baron, A., Krysztofiak, G., Berthet, G., Kloss, C., et al., 2024. Evidence of a dual African and Australian biomass burning influence on the vertical distribution of aerosol and carbon monoxide over the Southwest Indian Ocean basin in early 2020. Atmospheric Chemistry and Physics, 24 (13), pp.8031-8048.
 <10.5194/acp-24-8031-2024>. <insu-04208981v2>.
- Belegante, L., et al. "Lessons learnt during the first Quality Assurance exercise of the ACTRIS high-power lidars." Journal Of Optoelectronics And Advanced Materials 26.9-10 (2024): 422-432.
- Bencardino, M., D'Amore, F., Angot, H., Angiuli, L.,
 Bertrand, Y., Cairns, W., Dieguez, M.C., Dommergue, A.,
 Ebinghaus, R., Esposito, G., Kominkova, K.,
 Labuschagne, C., Mannarino, V., Martin, L., Martino, M.,
 Neves, L.M., Mashyanov, N., Magand, O., Nelson, P.,
 Norstrom, C., Read, K., Sholupov, S., Skov, H., Tassone,
 A., Vitkova, G., Cinnirella, S., Sprovieri, F. and Pirrone, N.,
 2024. Patterns and trends of atmospheric mercury in
 the GMOS network: insights based on a decade of
 measurements. Environmental pollution 363, 125104,
 https://doi.org/10.1016/j.envpol.2024.125104
- Blayac, M., Yegen, C. H., Al Marj, E., Rodriguez, J. C. M., Cazaunau, M., Bergé, A., ... & Lanone, S. (2024). Acute exposure to realistic simulated urban atmospheres exacerbates pulmonary phenotype in cystic fibrosis-like mice. Journal of Hazardous Materials, 465, 133340.
- Blichner, S. M.; Yli-Juuti, T.; Mielonen, T.; Pöhlker, C.; Holopainen, E.; Heikkinen, L.; Mohr, C.; Artaxo, P.; Carbone, S.; Meller, B. B.; Quaresma Dias-Júnior, C.; Kulmala, M.; Petäjä, T.; Scott, C. E.; Svenhag, C.; Nieradzik, L.; Sporre, M.; Partridge, D. G.; Tovazzi, E.; Virtanen, A.; Kokkola, H.; Riipinen, I.: Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models, Nature communications Vol. 15(1), https://doi.org/10.1038/s41467-024-45001-y, 2024.

- Böck, T., Pospichal, B., and Löhnert, U.: Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling, Atmos. Meas. Tech., 17, 219-233, https://doi.org/10.5194/amt-17-219-2024, 2024.
- Böckmann, C., Ritter, C., and Graßl, S.: Improvement of aerosol coarse-mode detection through additional use of infrared wavelengths in the inversion of Arctic lidar data, Remote Sens., 16, 1576, https://doi.org/10.3390/rs16091576, 2024.
- Bourtsoukidis, E., Germain-Piaulenne, E., Gros, V.,
 Quéhé, P. -Y., Pikridas, M., Byron, J., Williams, J., Gliddon,
 D., Mohamed, R., Ekaabi, R., Lelieveld, J., Sciare, J.,
 Teixidó, O., and Paris, J. -D.: Attribution of Excess
 Methane Emissions Over Marine Environments of the
 Mediterranean and Arabian Peninsula, JGR
 Atmospheres, 129, e2024JD041621,
 https://doi.org/10.1029/2024JD041621, 2024.
- Bowdalo, D., Basart, S., Guevara, M., Jorba, O., Pérez García-Pando, C., Jaimes Palomera, M., Rivera Hernandez, O., Puchalski, M., Gay, D., Klausen, J., Moreno, S., Netcheva, S., and Tarasova, O.: GHOST: a globally harmonised dataset of surface atmospheric composition measurements, Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024, 2024.
- Boyer, M., Aliaga, D., Quéléver, L. L. J., Bucci, S., Angot, H., Dada, L., Heutte, B., Beck, L., Duetsch, M., Stohl, A., Beck, I., Laurila, T., Sarnela, N., Thakur, R. C., Miljevic, B., Kulmala, M., Petäjä, T., Sipilä, M., Schmale, J., and Jokinen, T.: The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition, Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, 2024.
- Bräkling, S., Vetter, M., Kurtenbach, R., Wiesen, P., Campbell, S., Moncur, J., and Klee, S.: Performance evaluation of an El&CI Dual Ionization TOFMS hyphenated with a flow modulated GCxGC system. J. Am. Soc. Mass Spectrom., 35, 2670-2679, https://doi.org/10.1021/jasms.4c00138, 2024.
- Bras, Y., Freney, E., Canzi, A., Amato, P., Bouvier, L., Pichon, J.-M., et al. (2024). Seasonal variations, origin, and parameterization of ice-nucleating particles at a mountain station in Central France. Earth and Space Science, 11, e2022EA002467. https://doi.org/10.1029/2022EA002467
- Brasseur, Z., Schneider, J., Lampilahti, J., Vakkari, V., Sinclair, V. A., Williamson, C. J., Xavier, C., Moisseev, D., Hartmann, M., Poutanen, P., Lampimäki, M., Kulmala, M., Petäjä, T., Lehtipalo, K., Thomson, E. S., Höhler, K., Möhler, O., and Duplissy, J.: Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland, Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, 2024.
- Bredeck, G., dos Santos Souza, E. J., Wigmann, C., Herrmann, H., Fomba, K. W., and Schins, R. P. F.: The influence of long-range transported Saharan dust on the inflammatory potency of ambient PM2.5 and PM10, Environ. Res., 252, 119008, https://doi.org/10.1016/j.envres.2024.119008, 2024.
- Breuninger, E. S., Tolu, J., Thurnherr, I., Aemisegger, F., Feinberg, A., Bouchet, S., Sonke, J. E., Pont, V., Wernli, H., and Winkel, L. H. E.: Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements, Atmos. Chem. Phys., 24, 2491– 2510, https://doi.org/10.5194/acp-24-2491-2024, 2024

- Breuninger, E.S., Tolu, J., Aemisegger, F. et al. Marine and terrestrial contributions to atmospheric deposition fluxes of methylated arsenic species. Nat Commun 15, 9623 (2024). https://doi.org/10.1038/s41467-024-53974-7
- Cai, R., Mikkilä, J., Bengs, A., Koirala, M., Mikkilä, J., Holm, S., Juuti, P., Meder, M., Partovi, F., Shcherbinin, A., Worsnop, D., Ehn, M. and Kangasluoma, J.: Extending the Range of Detectable Trace Species with the Fast Polarity Switching of Chemical Ionization Orbitrap Mass Spectrometry, Analytical Chemistry Vol. 96(21), pp. 8604-8612
- https://doi.org/10.1021/acs.analchem.4c00650, 2024.
- Cairo, F., Di Liberto, L., Dionisi, D., & Snels, M. (2024).
 Understanding Aerosol-Cloud Interactions through Lidar Techniques: A Review. Remote Sensing, 16(15), 2788. https://doi.org/10.3390/rs16152788
- Campanelli, M., Estellés, V., Kumar, G., Nakajima, T., Momoi, M., Gröbner, J., Kazadzis, S., Kouremeti, N., Karanikolas, A., Barreto, A., Nevas, S., Schwind, K., Schneider, P., Harju, I., Kärhä, P., Diémoz, H., Kudo, R., Uchiyama, A., Yamazaki, A., Iannarelli, A. M., Mevi, G., Di Bernardino, A., and Casadio, S.: Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers, Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, 2024.
- Carneiro R.G., Karasewicz M., Borges C.K., Janicka L., Wang D., Fisch G. and Stachlewska I.S., 2024, Seasonal analysis of planetary boundary layer and turbulence in Warsaw, Poland through Lidar and LES simulations, Remote Sensing, vol. 16(24), art. 4728, 10.3390/rs16244728
- Céspedes, J., Kotthaus, S., Preissler, J., Toupoint, C., Thobois, L., Drouin, M.-A., Dupont, J.-C., Faucheux, A., and Haeffelin, M.: The Paris low-level jet during PANAME 2022 and its impact on the summertime urban heat island, Atmos. Chem. Phys., 24, 11477–11496, https://doi.org/10.5194/acp-24-11477-2024, 2024
- Chebaicheb, H., Brito, J.F., Amodeo, T., Couvidat, F., Petit, J.-E., Tison, E., Abbou, G., Baudic, A., Chatain, M., Chazeau, B., Marchand, N., Falhun, R., Francony, F., Ratier, C., Grenier, D., Vidaud, R., Zhang, S., Gille, G., Meunier, L., Marchand, C., Riffault, V. & Favez, O. (2024). Multiyear high-temporal-resolution measurements of submicron aerosols at 13 French urban sites: data processing and chemical composition. (Vol. 16, pp. 5089-5109). Copernicus GmbH. https://doi.org/10.5194/essd-16-5089-2024
- Chellini, G., and Kneifel, S.: Turbulence as a key driver of ice aggregation and riming in Arctic low-level mixedphase clouds, revealed by long-term cloud radar observations, Geophys. Res. Lett., 51, e2023GL106599, https://doi.org/10.1029/2023GL106599, 2024.
- Chen, Z.Y., Turrubiates, R.F.M., Petetin, H., Lacima, A., Pérez García-Pando, C. and Ballester, J., 2024. Estimation of pan-European, daily total, fine-mode and coarse-mode Aerosol Optical Depth at 0.1° resolution to facilitate air quality assessments. Science of the Total Environment, 918, p.170593.
- Chesnoiu, G., Chiapello, I., Ferlay, N., Nabat, P., Mallet, M., Riffault, V.: Spatial variability and future evolution of surface solar radiation over Northern France and Benelux: a regional climate model approach, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1174, 2024.

- Chesnoiu, G., Ferlay, N., Chiapello, I., Auriol, F.,
 Catalfamo, D., Compiègne, M., Elias, T., and Jankowiak,
 I.: Influence of cloudy/clear-sky partitions, aerosols and
 geometry on the recent variability of surface solar
 irradiance's components in northern France,
 EGUsphere [preprint],
 https://doi.org/10.5194/egusphere-2024-767, 2024.
- Chiliński M.T., Markowicz K.M., Poczta P., Chojnicki B.H., Harenda K.M., Makuch P., Wang D., Stachlewska I.S., 2024, Vertical Profiles of Aerosol Optical Properties (VIS/NIR) over Wetland Environment: POLIMOS-2018 Field Campaign, Remote Sensing, vol. 16(23), art. 4580,

10.3390/rs16234580

- Christodoulou, A., Bezantakos, S., Bourtsoukidis, E., Stavroulas, I., Pikridas, M., Oikonomou, K., Iakovides, M., Hassan, S. K., Boraiy, M., El-Nazer, M., Wheida, A., Abdelwahab, M., Sarda-Estève, R., Rigler, M., Biskos, G., Afif, C., Borbon, A., Vrekoussis, M., Mihalopoulos, N., Sauvage, S., and Sciare, J.: Submicron aerosol pollution in Greater Cairo (Egypt): A new type of urban haze?, Environment International, 186, 108610, https://doi.org/10.1016/j.envint.2024.108610, 2024.
- Ciarelli, G., Tahvonen, S., Cholakian, A., Bettineschi, M., Vitali, B., Petäjä, T., and Bianchi, F.: On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest, Geosci. Model Dev., 17, 545–565, https://doi.org/10.5194/gmd-17-545-2024, 2024.
- Clemente, Á., Yubero, E., Nicolás, J.F., Crespo, J., Galindo, N., 2024. Organic tracers in fine and coarse aerosols at an urban Mediterranean site: Contribution of biomass burning and biogenic emissions. Environmental Science and Pollution Research 31, 25216-25226.
- Cristian, A., Zuzeac, M., Ciocan, G., Iorga, G., & Antonescu, B., 2024: A Thunderstorm climatology of Romania (1941–2022). Romanian Reports in Physics, 76(4),710. https://doi.org/10.59277/RomRepPhys.2024.7 6 710
- Cuevas-Agulló, E., Barriopedro, D., García, R. D., Alonso-Pérez, S., González-Alemán, J. J., Werner, E., Suárez, D., Bustos, J. J., García-Castrillo, G., García, O., Barreto, Á., and Basart, S.: Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February-March 2020–2022 and associated atmospheric circulation, Atmos. Chem. Phys., 24, 4083– 4104, https://doi.org/10.5194/acp-24-4083-2024, 2024.
- D.O. De Haan, L.N. Hawkins, E.A. Pennington, H.G. Welsh, A.A. Rodriguez, M.A. Symons, A.D Andretta, M.A. Rafla, C. Le, J.D. Surratt, M. Cazaunau, E. Pangui, J-F. Doussin, Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing, ACS Environment Science and Technology Air, 8(12) 2574-2586 (2024).
- D.O. De Haan, L.N. Hawkins, J.A. Weber, B.T. Moul, S. Hui, S.A. Cox, J.U. Esse, N.R. Skochdopole, M. Cazaunau, A. Bergé, E. Pangui, J. Heuser, J-F. Doussin, B. Picquet-Varrault, Multiphase guaiacol photooxidation: Fenton reactions, brown carbon, and secondary organic aerosol formation in suspended aerosol particles, ACS Environment Science and Technology Air, 1(5) 346-356 (2024).
- Daniel Brattgård, Mattias Rahm, and Markus Henriksson: Wavelength-dependent extinction statistics based on long-term aerosol size distribution measurements, Proc. SPIE 13194, Environmental Effects on Light Propagation and Adaptive Systems VII, https://doi.org/10.1117/12.3031475.

- Deaconu, L.-T.; Mereuţă, A.; Radovici, A.; Ștefănie, H.I.; Botezan, C.; Ajtai, N. Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe. Remote Sens. 2024, 16, 1677. https://doi.org/10.3390/rs16101677
- del Águila, A., Alcaraz-Segura, D., Martínez-López, J., Postma, T., Alados-Arboledas, L., Zamora, R., & Navas-Guzmán, F. (2024). Two decades of high-resolution aerosol product over the Sierra Nevada Mountain region (SE Spain): Spatio-temporal distribution and impact on ecosystems. Atmospheric Research, 308, 107515. doi: 10.1016/j.atmosres.2024.107515
- Deshmukh, S., Poulain, L., Wehner, B., Henning, S., Petit, J.-E., Fombelle, P., Favez, O., Herrmann, H. & Pöhlker, M. (2024). External particle mixing influences hygroscopicity in a sub-urban area. Copernicus GmbH. https://doi.org/10.5194/egusphere-2024-3027
- Dewald, P.; Seubert, T.; Andersen, S. T.; Türk, G. N. T. E.; Schuladen, J.; McGillen, M. R.; Denjean, C.; Etienne, J.-C.; Garrouste, O.; Jamar, M.; Harb, S.; Cirtog, M.; Michoud, V.; Cazaunau, M.; Bergé, A.; Cantrell, C.; Dusanter, S.; Picquet-Varrault, B.; Kukui, A.; Xue, C.; Mellouki, A.; Lelieveld, J.; Crowley, J. N. NO3 Reactivity during a Summer Period in a Temperate Forest below and above the Canopy. Atmos. Chem. Phys. 2024, 24 (16), 8983–8997. https://doi.org/10.5194/acp-24-8983-2024
- Di Antonio, L., Beekmann, M., Siour, G., Michoud, V., Cantrell, C., Bauville, A., Bergé, A., Cazaunau, M., Chevaillier, S., Cirtog, M., Brito, J.F., Formenti, P., Gaimoz, C., Garret, O., Gratien, A., Gros, V., Haeffelin, M., Hawkins, L.N., Kotthaus, S., Noyalet, G., Pereira, D., Petit, J.-E., Pronovost, E.D., Riffault, V., Yu, C., Foret, G., Doussin, J.-F. & Di Biagio, C. (2024). Modelling of atmospheric variability of gas and aerosols during the ACROSS campaign 2022 in the greater Paris area: evaluation of the meteorology, dynamics and chemistry. Copernicus GmbH. https://doi.org/10.5194/egusphere-2024-2175
- dos Santos Souza, E. J., Fomba, K. W., Gómez Maqueo Anaya, S., Schepanski, K., Freire, S. M., Materić, D., Reemtsma, T., and Herrmann, H.: Particle-bound mercury in Saharan dust-loaded particulate matter in Cabo Verde, Journal of Hazardous Materials, 487, 137053, https://doi.org/10.1016/j.jhazmat.2024.137053, 2024a.
- dos Santos Souza, E. J., Fomba, K. W., van Pinxteren, M., Deabji, N., and Herrmann, H.: Strong synergistic and antagonistic effects of quinones and metal ions in oxidative potential (OP) determination by ascorbic acid (AA) assays, Journal of Hazardous Materials, 478, 135599, https://doi.org/10.1016/j.jhazmat.2024.135599, 2024b.
- El Gdachi, S., Tulet, P., Réchou, A., Burnet, F., Mouchel-Vallon, C., Jambert, C., & Leriche, M. (2024).
 Thermodynamic processes driving thermal circulations on slopes: Modeling anabatic and katabatic flows on Reunion Island. Journal of Geophysical Research: Atmospheres, 129(17), e2023JD040431.
- El Haddad, I., Vienneau, D., Daellenbach, K. R., Modini, R., Slowik, J. G., Upadhyay, A., Vasilakos, P. N., Bell, D., de Hoogh, K., & Prevot, A. S. H. (2024). Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution? Atmos. Chem. Phys., 24, 11981-12011. https://doi.org/10.5194/acp-24-11981-2024

- Evgenieva, Ts., Vakareeva, E., Gurdev, L., Dreischuh, T., "Identification of Saharan-Dust Intrusions over Sofia, Bulgaria, Using Near-Ground PM10 and PM2.5 Mass Concentration Measurements", Aerosol Air Qual. Res. 24, 230304 (2024). https://doi.org/10.4209/aaqr.230304
- Färber, M., Fuchs, H., Bohn, B., Carlsson, P. T., Gkatzelis, G. I., Marcillo Lara, A. C., Rohrer, F., Vereecken, L., Wedel, S., Wahner, A., and Novelli, A.: Effect of the alkoxy radical chemistry on the ozone formation from anthropogenic organic compounds investigated in chamber experiments, ACS ES&T Air, 1, https://doi.org/10.1021/acsestair.4c00064, 2024.
- Färber, M., Vereecken, L., Fuchs, H., Gkatzelis, G. I., Rohrer, F., Wedel, S., Wahner, A., and Novelli, A.: Impact of temperature-dependent non-PAN peroxynitrate formation, RO2NO2, on nighttime atmospheric chemistry, Phys. Chem. Chem. Phys., 26, 5183-5194, https://doi.org/10.1039/D3CP04163H, 2024.
- Finkenzeller, H., Mikkilä, J., Righi, C., Juuti, P., Sipilä, M., Rissanen, M., Worsnop, D., Shcherbinin, A., Sarnela, N., and Kangasluoma, J.: Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets, Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, 2024.
- Floutsi, A. A., Baars, H., and Wandinger, U.: HETEAC-Flex: an optimal estimation method for aerosol typing based on lidar-derived intensive optical properties, Atmos. Meas. Tech., 17, 693–714, https://doi.org/10.5194/amt-17-693-2024, 2024.
- Fry, J. L., Ooms, P., Krol, M., Kerckhoffs, J., Vermeulen, R., Wesseling, J., & van den Elshout, S. (2025). Effect of street trees on local air pollutant concentrations (NO2, BC, UFP, PM2. 5) in Rotterdam, the Netherlands. Environmental Science: Atmospheres.
- Fung, P. L., Savadkoohi, M., Zaidan, M. A., Niemi, J. V., Timonen, H., Pandolfi, M., Alastuey, A., Querol, X., Hussein, T., and Petäjä, T.: Constructing transferable and interpretable machine learning models for black carbon concentrations. Environment International, 184, 108449. https://doi.org/10.1016/j.envint.2024.108449, 2024.
- Furst, L., Cipoli, Y., Galindo, N., Yubero, E., Viegas, C., Pena, P., Nunes, T., Feliciano, M., Alves, C., 2024.
 Comprehensive analysis of particulate matter, gaseous pollutants, and microbiological contamination in an international chain supermarket. Environmental Pollution 363, 125236.
- Gantois, D., Payen, G., Sicard, M., Duflot, V., Bègue, N., Marquestaut, N., Portafaix, T., Godin-Beekmann, S., Hernandez, P., and Golubic, E., 2024. Multiwavelength aerosol lidars at the Maïdo supersite, Réunion Island, France: instrument description, data processing chain, and quality assessment, Earth Syst. Sci. Data, 16, 4137– 4159, https://doi.org/10.5194/essd-16-4137-2024.
- Garatachea, R., Pay, M.T., Achebak, H., Jorba, O., Bowdalo, D., Guevara, M., Petetin, H., Ballester, J. and Pérez García-Pando, C., 2024. National and transboundary contributions to surface ozone concentration across European countries. Communications Earth & Environment, 5(1), p.588.
- García, R. D., Barreto, Á., Rey, C. Fraile-Nuez, E.,
 González-Vega, A., González-Vega, A., León-Luis, S.F.,
 Alcantara, A., Almansa, A. F., Guirado-Fuentes, C.,
 González-Sicilia, P., Cachorro, V.E., and and Bouchar, F.
 : Aerosol retrievals derived from a low-cost Calitoo sunphotometer taken on board a research
 vessel. Atmospheric Environment, Volume 341, 15,
 https://doi.org/10.1016/j.atmosenv.2024.120888, 2024

- Garcia-Marlès, M., Lara, R., Reche, C., Pérez, N., Tobías, A., Savadkoohi, M., Beddows, D., Salma, I., Vörösmarty, M., Weidinger, T., Hueglin, C., Mihalopoulos, N., Grivas, G., Kalkavouras, P., Ondracek, J., Zikova, N., Niemi, J.V., Manninen, H.E., Green, D.C., Tremper, A.H., Norman, M., Vratolis, S., Diapouli, E., Eleftheriadis, K., Gómez-Moreno, F.J., Alonso-Blanco, E., Wiedensohler, A., Weinhold, K., Merkel, M., Bastian, S., Hoffmann, B., Altug, H., Petit, J.-E., Acharja, P., Favez, O., Santos, S.M.D., Putaud, J.-P., Dinoi, A., Contini, D., Casans, A., Casquero-Vera, J.A., Crumeyrolle, S., Bourrianne, E., Poppel, M.V., Dreesen, F.E., Harni, S., Timonen, H., Lampilahti, J., Petäjä, T., Pandolfi, M., Hopke, P.K., Harrison, R.M., Alastuey, A. & Querol, X. (2024). Source apportionment of ultrafine particles in urban Europe. Environment International, 194, 109149. https://doi.org/10.1016/j.envint.2024.109149
- Garcia-Marlès, M., Lara, R., Reche, C., Pérez, N., Tobías, A., Savadkoohi, M., Beddows, D., Salma, I., Vörösmarty, M., Weidinger, T., Hueglin, C., Mihalopoulos, N., Grivas, G., Kalkavouras, P., Ondráček, J., Zíková, N., Niemi, J.V., Manninen, H.E., Green, D.C., Tremper, A.H., Norman, M., Vratolis, S., Eleftheriadis, K., Gómez-Moreno, F.J., Alonso-Blanco, E., Wiedensohler, A., Weinhold, K., Merkel, M., Bastian, S., Hoffmann, B., Altug, H., Petit, J.-E., Favez, O., Dos Santos, S.M., Putaud, J.-P., Dinoi, A., Contini, D., Timonen, H., Lampilahti, J., Petäjä, T., Pandolfi, M., Hopke, P.K., Harrison, R.M., Alastuey, A. & Querol, X. (2024). Inter-annual trends of ultrafine particles in urban Europe. (Vol. 185, pp. 108510). Elsevier BV. https://doi.org/10.1016/j.envint.2024.108510
- Garmash, O., Ezhova, E., Arshinov, M., Belan, B., Lampilahti, A., Davydov, D., Räty, M., Aliaga, D., Baalbaki, R., Chan, T., Bianchi, F., Kerminen, V.-M., Petäjä, T. and Kulmala, M.: Heatwave reveals potential for enhanced aerosol formation in Siberian boreal forest, Environmental Research Letters Vol. 19(1) https://doi.org/10.1088/1748-9326/ad10d5, 2024.
- Garner, N. M., Top, J., Mahrt, F., El Haddad, I., Ammann, M., & Bell, D. M. (2024). Iron-containing seed particles enhance α-pinene secondary organic aerosol mass concentration and dimer formation. Environ. Sci. Technol., 58, 16984-16993. https://doi.org/10.1021/acs.est.4c07626
- Garnés-Morales, G., Costa, M. J., Bravo-Aranda, J. A., Granados-Muñoz, M. J., Salgueiro, V., Abril-Gago, J., ... & Guerrero-Rascado, J. L. (2024). Four years of atmospheric boundary layer height retrievals using COSMIC-2 satellite data. Remote Sensing, 16(9), 1632. doi: 10.3390/rs16091632
- Ge, Y., Solberg, S., Heal, M. R., Reimann, S., van Caspel, W., Hellack, B., Salameh, T., & Simpson, D. (2024).
 Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe. Atmos. Chem. Phys., 24, 7699-7729.
 https://doi.org/10.5194/acp-24-7699-2024
- Gebauer, H., Floutsi, A. A., Haarig, M., Radenz, M., Engelmann, R., Althausen, D., Skupin, A., Ansmann, A., Zenk, C., and Baars, H.: Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm, Atmos. Chem. Phys., 24, 5047-5067, https://doi.org/10.5194/acp-24-5047-2024, 2024.

- Georgopoulou, M. P., Macias Rodriguez, J. C., Yegen, C. H., Kaltsonoudis, C., Cazaunau, M., Vasilakopoulou, C. N., ... & Pandis, S. N. (2024). A coupled atmospheric simulation chamber system for the production of realistic aerosols and preclinical model exposure. Air Quality, Atmosphere & Health, 17(12), 2909-2930.
- Germain-Piaulenne, E., Paris, J.-D., Gros, V., Quéhé, P.-Y., Pikridas, M., Baisnée, D., Berchet, A., Sciare, J., and Bourtsoukidis, E.: Middle East oil and gas methane emissions signature captured at a remote site using light hydrocarbon tracers, Atmospheric Environment: X, 22, 100253,
 - https://doi.org/10.1016/j.aeaoa.2024.100253, 2024.
- Gil-Díaz, C., Sicard, M., Comerón, A., dos Santos Oliveira, D. C. F., Muñoz-Porcar, C., Rodríguez-Gómez, A., Lewis, J. R., Welton, E. J., and Lolli, S.: Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements, Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, 2024.
- Gómez Maqueo Anaya, S., Althausen, D., Faust, M., Baars, H., Heinold, B., Hofer, J., Tegen, I., Ansmann, A., Engelmann, R., Skupin, A., Heese, B., and Schepanski, K.: The implementation of dust mineralogy in COSMO5.05-MUSCAT, Geosci. Model Dev., 17, 1271–1295, https://doi.org/10.5194/gmd-17-1271-2024, 2024.
- Gómez-Sánchez, N., Galindo, N., Alfosea-Simón, M., Nicolás, J.F., Crespo, J., Yubero, E., 2024. Chemical composition of PM10 at a rural site in the western Mediterranean and its relationship with the oxidative potential. Chemosphere 363, 142880.
- González, Y., Sánchez-Barrero, M. F., Popovici, I., Barreto, Á., Victori, S., Welton, E. J., García, R. D., Sicilia, P. G., Almansa, F. A., Torres, C., and Goloub, P.: Optical Properties of North Atlantic Aerosols Through a compact dual-wavelength depolarization Lidar Observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2727, 2024.
- González-Fernández, D., Román, R., Antuña-Sánchez, J.C., Cachorro, V.E., Copes, G., Herrero-Anta, S., Herrero del Barrio, C., Barreto, A., et al. (2024) A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica. Quarterly Journal of the Royal Meteorological Society, 1–19. Available from: https://doi.org/10.1002/qj.4834
- Gramlich Y., K. Siegel, S.L. Haslett, R.S. Cremer, Ch. Lunder, S,M, Kommula, A. Bucholz, K.E. Yttri, G. Cheng, R. Krejci, P. Zieger, A. Virtanen, I. Riipinen, C. Mohr: Impact of biomass burning on Arctic aerosol compositio, ECS Air Space Chemistry, https://doi.org/10.1021/acsearthspacechem.3c00187, 2024.
- Graßl, S., Ritter, C., Wilsch, J., Herrmann, R., Doppler, L., and Roman, R.: From polar day to polar night: A comprehensive sun and star photometer study of trends in Arctic aerosol properties in Ny-Ålesund, Svalbard, Remote Sens., 16, 3725, https://doi.org/10.3390/rs16193725, 2024.
- Griesche, H. J., Barrientos-Velasco, C., Deneke, H., Hünerbein, A., Seifert, P., and Macke, A.: Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget, Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, 2024.

- Griesche, H. J., Seifert, P., Engelmann, R., Radenz, M., Hofer, J., Althausen, D., Walbröl, A., Barrientos-Velasco, C., Baars, H., Dahlke, S., Tukiainen, S., and Macke, A.: Cloud micro- and macrophysical properties from ground-based remote sensing during the MOSAiC drift experiment. Sci. Data, 11, 505, https://doi.org/10.1038/s41597-024-03325-w, 2024.
- Gueffier, J., Gheusi, F., Lothon, M., Pont, V., Philibert, A., Lohou, F., Derrien, S., Bezombes, Y., Athier, G., Meyerfeld, Y., Vial, A. and Leclerc, E.: Weather regimes and the related atmospheric composition at a Pyrenean observatory characterized by hierarchical clustering of a 5-year data set. Atmos. Chem. Phys. https://doi.org/10.5194/acp-24-287-2024
- Haeffelin, M., Ribaud, J.-F., Céspedes, J., Dupont, J.-C., Lemonsu, A., Masson, V., Nagel, T. & Kotthaus, S. (2024). Impact of boundary layer stability on urban park cooling effect intensity. Copernicus GmbH. https://doi.org/10.5194/egusphere-2024-1777
- Hafiz A., Stachlewska I.S., 2024, Broadband Singlechannel Fluorescence in ESA Mobile Raman Lidar (EMORAL), 10th International Conference on Sensors and Electronic Instrumentation Advances (SEIA' 2024)
- Hao, L., Li, Z., Yli-Juuti, T., Ylisirniö, A., Pullinen, I., Miettinen, P., Xu, W., Lehto, V.-P., Worsnop, D. R., Virtanen, A.: Direct mitigation of secondary organic aerosol particulate pollutants by multiphase photocatalysis. Science of the Total Environment, 923, 171323, https://doi.org/10.1016/j.scitotenv.2024.171323, 2024.
- Harni, S. D., Aurela, M., Saarikoski, S., Niemi, J. V., Portin, H., Manninen, H., Leinonen, V., Aalto, P., Hopke, P. K., Petäjä, T., Rönkkö, T., and Timonen, H.: Source apportionment of particle number size distribution at the street canyon and urban background sites, Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, 2024.
- Hartikainen A. H., Basnet, S., Yli-Pirilä, P., Ihalainen, M., Talvinen, S., Tissari, J., Mikkonen, S., Zimmermann, R., and Sippula, O.: Resolving emission factors and formation pathways of organic gaseous compounds from residential combustion of European brown coal
- Combustion and Flame, 265, 113485, doi:10.1016/j.combustflame.2024.113485, 2024.
- Hedelt, P., Reichardt, J., Lauermann, F., Weiß, B., Theys, N., Redondas, A., Barreto, A., Garcia, O., and Loyola, D.: Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1710, 2024.
- Heikkinen, L., Partridge, D. G., Blichner, S., Huang, W., Ranjan, R., Bowen, P., Tovazzi, E., Petäjä, T., Mohr, C., and Riipinen, I.: Cloud response to co-condensation of water and organic vapors over the boreal forest, Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, 2024.
- Hellén, H., Tykkä, T., Schallhart, S., Stratigou, E., Salameh, T., and Iturrate-Garcia, M.: Measurements of atmospheric C10-C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes, Atmos. Meas. Tech., 17, 315-333, https://doi.org/10.5194/amt-17-315-2024, 2024.
- Hellén, H.; Kouznetsov, R.; Kraft, K.; Seppälä, J.;
 Vestenius, M.; Jalkanen, J.-P.; Laakso, L.; Hakola, H.:
 Shipping and algae emissions have a major impact on
 ambient air mixing ratios of non-methane
 hydrocarbons (NMHCs) and methanethiol on Utö Island
 in the Baltic Sea, Atmospheric chemistry and physics,
 https://doi.org/10.5194/acp-24-4717-2024, 2024.

- Herrero del Barrio, C., Román, R., González, R., Cazorla, A., Herreras-Giralda, M., Antuña-Sánchez, J. C., ... & de Frutos, Á. M. (2024). CAECENET: An automatic system processing photometer and ceilometer data from different networks to provide columnar and verticallyresolved aerosol properties. PloS one, 19(12), e0311990. doi: 10.1371/journal.pone.0311990
- Heslin-Rees, D., Tunved, P., Ström, J., Cremer, R., Zieger, P., Riipinen, I., Ekman, A. M. L., Eleftheriadis, K., and Krejci, R.: Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic, Atmos. Chem. Phys., https://doi.org/10.5194/acp-24-2059-2024, 2024
- Hoffer, A., Meiramova, A., Toth, A., Jancsek-Turóczi, B., et al., 2024: Assessment of the contribution of residential wood burning emissions to ambient aerosol levels during wintertime in Hungary. Atmospheric Chemistry and Physics, 24(3), 1659– 1671. https://doi.org/10.5194/acp-24-1659-2024
- Horník, Š., Pokorná, P., Vodička, P., Lhotka, R., Sýkora, J., Arora, S., Poulain, L., Herrmann, H., Schwarz, J., and Ždímal, V.: Positive matrix factorization of seasonally resolved organic aerosol at three different central European background sites based on nuclear magnetic resonance Aerosolomics data, Science of The Total Environment, 916, 170303, https://doi.org/10.1016/j.scitotenv.2024.170303, 2024llmann, N., and Rösgen, V.: O3 chemistry of 2,5-dimethylfuran: mechanism development. Environ. Sci.: Atmos., 4, 1000-1011, https://doi.org/10.1039/D4EA00045E, 2024.
- Huang, W., Junninen, H., Garmash, O., Lehtipalo, K., Stolzenburg, D., Lampilahti, J., Ezhova, E., Schallhart, S., Rantala, P., Aliaga Badani, D. A., Ahonen, L., Sulo, J., Quéléver, L., Cai, R., Alekseychik, P., Buenrostro Mazon, Stephany N., Yao, L., Blichner, S. M., Zha, Q., Mammarella, I., Kirkby, J., Kerminen, V.-M., Worsnop, D., Kulmala, M. and Bianchi, F.: Potential pre-industrial-like new particle formation induced by pure biogenic organic vapors in Finnish peatland, Science Advances Vol. 10(14) https://doi.org/10.1126/sciadv.adm9191, 2024.
- Huang, W., Wu, C., Gao, L., Gramlich, Y., Haslett, S. L., Thornton, J., Lopez-Hilfiker, F. D., Lee, B. H., Song, J., Saathoff, H., Shen, X., Ramisetty, R., Tripathi, S. N., Ganguly, D., Jiang, F., Vallon, M., Schobesberger, S., Yli-Juuti, T., and Mohr, C.: Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments, Atmos. Chem. Phys., 24, 2607–2624, https://doi.org/10.5194/acp-24-2607-2024, 2024.
- Illmann, N., and Rösgen, V.: O3 chemistry of 2,5dimethylfuran: mechanism development. Environ. Sci.: Atmos., 4, 1000-1011, https://doi.org/10.1039/D4EA00045E, 2024.
- in 't Veld, M., Seco, R., Reche, C., Pérez, N., Alastuey, A., Portillo-Estrada, M., Janssens, I. A., Peñuelas, J., Fernandez-Martinez, M., Marchand, N., Temime-Roussel, B., Querol, X., & Yáñez-Serrano, A. M. (2024). Identification of volatile organic compounds and their sources driving ozone and secondary organic aerosol formation in NE Spain. Science of The Total Environment, 906, 167159. https://doi.org/10.1016/J.SCITOTENV.2023.167159

- Janeczek J., Jabłońska M. (2024) Evolution of air quality in the Upper Silesian agglomeration. W: Silesia Superior. Narratives on Upper Silesia – The Multitude of Perspectives. Hg. Renata Dampc-Jarosz, Andrzej Kowalczyk, Lucyna Sadzikowska. TRANSitions. Transdisciplinary, Transmedial and Transnational Cultural Studies / Transdisziplinäre, transmediale und transnationale Studien zur Kultur - Band 014.1. V&R unipress, ss. 344. ISBN: 978-3-8471-1837-4.
- Janoszka, K., Jaworek, K., Klyta, J. (2024). Comparison of Two Analytical Techniques of Biomass Burning Markers in PM1 and PM2.5 From Zabrze, Southern Poland. J. Sep. Sci. 47, 22; https://doi.org/10.1002/jssc.70036;
- Karasewicz M., Wacławczyk M., Ortiz-Amezcua P., Janicka Ł., Poczta P., Borges C.K. and Stachlewska I.S., 2024, Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements, Atmospheric Chemistry and Physics, vol. 24(23), pp. 13231-13251, 10.5194/acp-24-13231-2024
- Kau, D., Materić, D., Holzinger, R., Baumann-Stanzer, K., Schauer, G., & Kasper-Giebl, A. (2024). Fine micro-and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria. Chemosphere, 352, 141410, https://doi.org/10.1016/j.chemosphere.2024.141410
- Kecorius S., L. Madueño, M. Lovric, N. Racic, A. Peters, M. Schwarz, J. Cyrys, Juan Andrés Casquero-Vera, Lucas Alados-Arboledas, S. Conil, J. Sciare, J. Ondracek, A. Gannet Hallar, F. J. Gómez-Moreno, R. Ellul, A. Kristensson, M. Sorribas, N. Michalopoulos, N. Kalivitis, M. Gini, K. Eleftheriadis, S. Vratolis, K. Jeongeun, W. Birmili, B. Bergmans, N. Nikolova, A. Dinoi ,Daniele Contini, A. Marinoni, A. Alastuey, T. Petäjä, Sergio Rodriguez, D. Picard, B. Brem, M. Priestman, David C. Green, David C.S. Beddows ,R. M. Harrison, C. O'Dowd, D. Ceburnis, A. Hyvärinen, B. Henzing, S. Crumeyrolle, J.P. Putaud, P. Laj, K. Weinhold, K. Plauškaitė, Steigvilė Byčenkienė: Atmospheric New Particle Formation Identifier Using Longitudinal Global Particle Number Size Distribution Data, Nature, Scientific Data, 10.1038/s41597-024-04079-1, 2024.
- Keppens, A., Di Pede, S., Hubert, D., Lambert, J.-C., Veefkind, P., Sneep, M., De Haan, J., ter Linden, M., Leblanc, T., Compernolle, S., Verhoelst, T., Granville, J., Nath, O., Fjæraa, A. M., Boyd, I., Niemeijer, S., Van Malderen, R., Smit, H. G. J., Duflot, V., Godin-Beekmann, S., Johnson, B. J., Steinbrecht, W., Tarasick, D. W., Kollonige, D. E., Stauffer, R. M., Thompson, A. M., Dehn, A., and Zehner, C.: 5 years of Sentinel-5P TROPOMI operational ozone profiling and geophysical validation using ozonesonde and lidar ground-based networks, Atmos. Meas. Tech., 17, 3969–3993, 2024 https://doi.org/10.5194/amt-17-3969-2024
- Khaykin, S., Legras, B., Feofilov, A.G., Soares, O., Godin-Beekmann, S., Hu, Q., Goloub, P., Sakai, T., Morino, I., Querel, R. and Liley, B., 2024. Exploring the effects of wildfires on stratospheric aerosol composition and dynamics using satellite and ground-based lidars. In CALIPSO International Symposium on Spaceborne Lidar
- Khaykin, S., Soares, O., Godin-Beekmann, S., Hu, Q., Goloub, P., Veselovskii, I., Haeffelin, M., Sakai, T., Morino, I., Querel, R. & Liley, B. (2024). Impact of extreme wildfires on stratospheric aerosol and gaseous composition. https://insu.hal.science/insu-04601331

- Kolgotin A., D. Mueller, P. Goloub, Q. Hu, T. Podvin, X. Wang et al., Aerosol Typing from Linear-estimations for the Analytical Separation ATLAS of complex aerosol mixtures and improved identification of microphysical parameters from multiwavelength lidar data, part 2: case studies, Applied Optics, 2024, https://doi.org/10.1364/JOSAA.537287
- Kommula S.M., A. Bucholz, Y. Gramlich, T. Mielonen, L. Hao, I. Pullinen, L. Vettikkat, A. Yllisirniö, J. Joutsensaari, S. Schobesberger, P. Tiitta, A. Leskinen, D. Heslin-Rees, Sl.L. Hasslet, K. Siegel, C. Lunder, P. Zieger, R. Krejci, S. Romakkaniemi, C. Mohr, A. Virtanen: Effect of longrange transported fire aerosols on cloud condensation nuclei concentrations and cloud properties at high latitudes, Geophysical Research Letters, https://doi.org/10.1029/2023GL107134, 2024
- Kommula, S. M., Buchholz, A., Gramlich, Y., Mielonen, T., Hao, L., Pullinen, I., Vettikkat, L., Ylisirniö, A., Joutsensaari, J., Schobesberger, S., Tiitta, P., Leskinen, A., Hesslin- Rees, D., Haslett, S. L., Siegel, K., Lunder, C., Zieger, P., Krejci, R., Romakkaniemi, S., Mohr, C., and Virtanen, A. (2024) Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes Geophys. Res. Lett., 51(6) doi:10.1029/2023GL107134.
- Kong, X., Wu, C., Mishra, H. R., Hao, Y., Cazaunau, M., Bergé, A., ... & Hallquist, M. (2024). Impact of SO2 and light on chemical morphology and hygroscopicity of natural salt aerosols. Atmospheric Environment, 322, 120373.
- Krajny E.A., Ośródka L., Wojtylak M, Application of Doppler sodar in short-term forecasting of PM10 concentration in the air in Krakow (Poland) AMT, 17, 2451–2464, (2024) https://doi.org/: 10.5194/amt-17-2451-2024:
- Kulmala, M., Ke, P., Lintunen, A., Peräkylä, O., Lohtander, A., Tuovinen, S., Lampilahti, J., Kolari, P., Schiestl-Aalto, P., Kokkonen, T., Nieminen, T., Dada, L., Ylivinkka, I., Petäjä, T., Bäck, J., Lohila, A., Heimsch, L., Ezhova, E., Kerminen. V.-M.: A novel concept for assessing the potential of different boreal ecosystems to mitigate climate change (CarbonSink+ potential). Boreal Environment Research, 29(1-6), 1-16, 2024.
- Lacher, L., Adams, M. P., Barry, K., Bertozzi, B.,
 Bingemer, H., Boffo, C., Bras, Y., Büttner, N., Castarede,
 D., Cziczo, D. J., DeMott, P. J., Fösig, R., Goodell, M.,
 Höhler, K., Hill, T. C. J., Jentzsch, C., Ladino, L. A., Levin, E.
 J. T., Mertes, S., Möhler, O., Moore, K. A., Murray, B. J.,
 Nadolny, J., Pfeuffer, T., Picard, D., Ramírez-Romero, C.,
 Ribeiro, M., Richter, S., Schrod, J., Sellegri, K., Stratmann,
 F., Swanson, B. E., Thomson, E. S., Wex, H., Wolf, M. J.,
 and Freney, E.: The Puy de Dôme ICe Nucleation
 Intercomparison Campaign (PICNIC): comparison
 between online and offline methods in ambient air,
 Atmos. Chem. Phys., 24, 2651–2678,
 https://doi.org/10.5194/acp-24-2651-2024, 2024.

- Laj, P., Lund Myhre, C., Riffault, V., Amiridis, V., Fuchs, H., Eleftheriadis, K., Petäjä, T., Salameh, T., Kivekäs, N., Juurola, E., Saponaro, G., Philippin, S., Cornacchia, C., Alados Arboledas, L., Baars, H., Claude, A., De Mazière, M., Dils, B., Dufresne, M., Evangeliou, N., Favez, O., Fiebig, M., Haeffelin, M., Herrmann, H., Höhler, K., Illmann, N., Kreuter, A., Ludewig, E., Marinou, E., Möhler, O., Mona, L., Eder Murberg, L., Nicolae, D., Novelli, A., O'Connor, E., Ohneiser, K., Petracca Altieri, R. M., Picquet-Varrault, B., van Pinxteren, D., Pospichal, B., Putaud, J., Reimann, S., Siomos, N., Stachlewska, I., Tillmann, R., Voudouri, K. A., Wandinger, U., Wiedensohler, A., Apituley, A., Comerón, A., Gysel-Beer, M., Mihalopoulos, N., Nikolova, N., Pietruczuk, A., Sauvage, S., Sciare, J., Skov, H., Svendby, T., Swietlicki, E., Tonev, D., Vaughan, G., Zdimal, V., Baltensperger, U., Doussin, J., Kulmala, M., Pappalardo, G., Sorvari Sundet, S., and Vana, M.: Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS): The European Research Infrastructure Supporting Atmospheric Science. Bull. Amer. Meteor. Soc., 105, E1098-E1136, https://doi.org/10.1175/BAMS-D-23-0064.1, 2024.
- Le, V., Lobo, H., O'Connor, E. J., and Vakkari, V.: Longterm aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar, Atmos. Meas. Tech., 17, 921–941, https://doi.org/10.5194/amt-17-921-2024, 2024.
- Leinonen, V., Olin, M., Martikainen, S., Mäkinen, U. V., Mikkonen, S., Karjalainen, P.: Dataset of vehicle chase measurements in real-world subfreezing winter conditions, Data in Brief, 54, https://doi.org/10.1016/j.dib.2024.110481, 2024.
- Lemonsu, A., Alessandrini, J., Capo, J., Claeys, M.,
 Cordeau, E., Munck, C., Dahech, S., Dupont, J., Dugay, F.,
 Dupuis, V., Forceville, G., Garrigou, S., Garrouste, O.,
 Goret, M., Goria, S., Haeffelin, M., Host, S., Joly, C.,
 Keravec, P., Kotthaus, S., Laruelle, N., Madelin, M.,
 Masson, V., Mauclair, C., Nagel, T., Pascal, M., Ribaud, J.,
 Roberts, G., Rosso, A., Roy, A., Sabre, M., Sanchez, O.,
 Stempfelet, M., Wei, W., Wilson, R. & Wurtz, J. (2024).
 The heat and health in cities (H2C) project to support
 the prevention of extreme heat in cities. (Vol. 34, pp.
 100472). Elsevier BV.
- https://doi.org/10.1016/j.cliser.2024.100472
 Lepistö, T., Lintusaari, H., Salo, L., Silvonen, V., Barreira, L. M. F., Hoivala, J., Markkula, L., Niemi, J. V., Ondracek, J., Teinilä, K., Manninen, H. E., Saarikoski, S., Timonen, H., Dal Maso, M., and Rönkkö, T.: Comparison of size distribution and electrical particle sensor measurement methods for particle lung deposited surface area (LDSAal) in ambient measurements with varying conditions, Aerosol Research, 2, 271–289,
- https://doi.org/10.5194/ar-2-271-2024, 2024. Leriche, M., Tulet, P., Deguillaume, L., Burnet, F., Colomb, A., Borbon, A., Jambert, C., Duflot, V., Houdier, S., Jaffrezo, J.-L., Vaïtilingom, M., Dominutti, P., Rocco, M., Mouchel-Vallon, C., E Gdachi, S., Brissy, M., Fathalli, M., Maury, N., Verreyken, B., Amelynck, C., Schoon, N., Gros, V., Pichon, J.-M., Ribeiro, M., Pique, E., Leclerc, E., Bourrianne, T., Roy, A., Moulin, E., Barrie, J., Metzger, J.-M., Péris, G., Guadagno, C., Bhugwant, C., Tibere, J.-M., Tournigand, A., Freney, E., Sellegri, K., Delort, A.-M., Amato, P., Joly, M., Baray, J.-L., Renard, P., Bianco, A., Réchou, A., and Payen, G., 2024. Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign, Atmos. Chem. Phys., 24, 4129-4155, https://doi.org/10.5194/acp-24-4129-2024

- Li X., Li H., Yao L., Stolzenburg D., Sarnela N., Vettikkat L., de Jonge R.W., Baalbaki R., Uusitalo H., Kontkanen J., Lehtipalo K., Daellenback K.R., Jokinen T., Aalto J., Keronen P., Schobesberger S., Nieminen T., Petäjä T., Kerminen V.-M., Bianchi F., Kulmala M., and Dada L.: Over 20 years of observations in the boreal forest reveal a decreasing trend of atmospheric new particle formation. Boreal Env. Res. 29: 25–52, 2024.
- Li, J., Zhang, X., Guo, L., Zhong, J., Wang, D., Wu, C., ... & Li, M. (2024). Invert global and China's terrestrial carbon fluxes over 2019–2021 based on assimilating richer atmospheric CO2 observations. Science of The Total Environment, 929, 172320. https://doi.org/10.1016/j.scitotenv.2024.172320.
- Li, K., Zhang, J., Bell, D. M., Wang, T., Lamkaddam, H., Cui, T., Qi, L., Surdu, M., Wang, D., Du, L., El Haddad, I., Slowik, J. G., & Prevot, A. S. H. (2024). Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions. National Science Review, 11. https://doi.org/10.1093/nsr/nwae014
- Li, L. J.; Thomsen, D.; Wu, C.; Priestley, M.; Iversen, E. M.; Skonager, J. T.; Luo, Y. Y.; Ehn, M.; Roldin, P.; Pedersen, H. B.; Bilde, M.; Glasius, M.; Hallquist, M., Gas-to-Particle Partitioning of Products from Ozonolysis of Δ3Carene and the Effect of Temperature and Relative Humidity. Journal of Physical Chemistry A 2024, 128, (5), 918-928.
- Li, X., Li, H., Yao, L., Stolzenburg, D., Sarnela, N.,
 Vettikkat, L., de Jonge R.W., Baalbaki, R., Uusitalo, H.,
 Kontkanen, J., Lehtipalo, K., Daellenbach, K.R., Jokinen,
 T., Aalto, J., Keronen, P., Schobesberger, S., Nieminen,
 T., Petäjä, T., Kerminen, V.-M., Bianchi, F., Kulmala, M.,
 and Dada, L.: Over 20 years of observations in the
 boreal forest reveal a decreasing trend of atmospheric
 new particle formation. Boreal Env. Res. 29: 25–52,
 2024.
- Listowski, C., Stephan, C.C., Le Pichon, A. et al. Stratospheric Gravity Waves Impact on Infrasound Transmission Losses Across the International Monitoring System. Pure Appl. Geophys. (2024). https://doi.org/10.1007/s00024-024-03467-3
- Liu, L., Hohaus, T., Franke, P., Lange, A. C., Tillmann, R., Fuchs, H., Tan, Z., Rohrer, F., Karydis, V., He, Q., Vardhan, V., Andres, S., Bohn, B., Holland, F., Winter, B., Wedel, S., Novelli, A., Hofzumahaus, A., Wahner, A., and Kiendler-Scharr, A.: Observational evidence reveals the significance of nocturnal chemistry in seasonal secondary organic aerosol formation. npj Clim. Atmos. Sci., 7, 207, https://doi.org/10.1038/s41612-024-00747-6, 2024.
- Liu, X., Alves Gouveia, D., Henzing, B., Apituley, A., Hensen, A., van Dinther, D., Huang, R., and Dusek, U.: Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021, Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, 2024.
- Liu, X., Concas, F., Motlagh, N. H., Zaidan, M. A., Fung, P. L., Varjonen, S., Niemi, J., Timonen, H., Hussein, T., Petäjä, T., Kulmala, M., Nurmi, P., and Tarkoma, S.: Estimating Black Carbon Levels With Proxy Variables and Low-Cost Sensors," in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2024.3361977, 2024.

- Liu, X., Zhang, X., Wang, T., Jin, B., Wu, L., Lara, R., Monge, M., Reche, C., Jaffrezo, J. L., Uzu, G., Dominutti, P., Darfeuil, S., Favez, O., Conil, S., Marchand, N., Castillo, S., de la Rosa, J. D., Stuart, G., Eleftheriadis, K., ... Alastuey, A., Querol, X. (2024). PM10-bound trace elements in pan-European urban atmosphere. Environmental Research, 260, 119630. https://doi.org/10.1016/J.ENVRES.2024.119630
- Löher, F., Borrás, E., Muñoz, A., Nölscher, C. 2024.
 Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products. ATMOS MEAS TECH, 17:4553-4579.
 https://doi.org/10.5194/amt-17-4553-2024
- López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Juárez, N., Nicolás, J.F., 2024. WSOC in accumulation mode aerosols: Distribution and relationship with BrC light absorption at an urban background site. Atmospheric Pollution Research 15, 102133.
- López-Caravaca, A., Vicente, E.D., Figueiredo, D., Evtyugina, M., Nicolás, J.F., Yubero, E., Galindo, N., Ryšavý, J., Alves, C.A., 2024. Gaseous and aerosol emissions from open burning of tree pruning and hedge trimming residues: Detailed composition and toxicity. Atmospheric Environment 338, 120849.
- López-Cayuela et al. 2024. Fine and coarse dust radiative impact during an intense Saharan dust outbreak over the Iberian Peninsula - short-wave direct radiative effect. Atmos. Chem. Phys., doi:10.5194/acp-25-3213-2025.
- López-Cayuela, M. Á., Zorzano, M. P., Guerrero-Rascado, J. L., & Córdoba-Jabonero, C. (2024). Quantitative analysis of the Martian atmospheric dust cycle: Transported mass, surface dust lifting and sedimentation rates. Icarus, 409, 115854. doi: 10.1016/j.icarus.2023.115854
- Lothon, M., Gheusi, F., Lohou, F., Pont, V., Soula, S., Jambert, C., Derrien, S., Bezombes, Y., Leclerc, E., Athier, G., Vial, A., Philibert, A., Campistron, B., Saïd, F., Sonke, J., Amestoy, J., Bargain, E., Bosser, P., Boulanger, D., Bret, G., Bodichon, R., Cabanas, L., Canut, G., Estrampes, J.-B., Gardrat, E., Gomez Kuri, Z., Gueffier, J., Guesdon, F., Lopez, M., Masson, O., Meslin, P.-Y., Meyerfeld, Y., Pascal, N., Pique, E., Ramonet, M., Starck, F., and Vidal, R.: The Pyrenean Platform for Observation of the Atmosphere: site, long-term dataset, and science, Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, 2024
- Lou, S., Shrivastava, M., Albinet, A., Tomaz, S., Srivastava, D., Favez, O., Shen, H. & Ding, A. (2024). Uncertainties in the effects of organic aerosol coatings on polycyclic aromatic hydrocarbon concentrations and their estimated health effects. Copernicus GmbH. https://doi.org/10.5194/egusphere-2024-3269
- Lu, L., Li, L., Rathod, S., Hess, P., Martínez, C., Fernandez, N., et al. (2024). Characterizing the atmospheric Mn cycle and its impact on terrestrial biogeochemistry. Global Biogeochemical Cycles, 38, e2023GB007967.
 - https://doi.org/10.1029/2023GB007967
- Luo, Y. Y.; Thomsen, D.; Iversen, E. M.; Roldin, P.; Skonager, J. T.; Li, L. J.; Priestley, M.; Pedersen, H. B.; Hallquist, M.; Bilde, M.; Glasius, M.; Ehn, M., Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis. Atmospheric Chemistry and Physics 2024, 24, (16), 9459-9473.

- Maazallahi, H., Stavropoulou, F., Sutanto, S. J., Steiner, M., Brunner, D., Mertens, M., Jöckel, P., Visschedijk, A., Denier van der Gon, H., Dellaert, S., Velandia Salinas, N., Schwietzke, S., Zavala-Araiza, D., Ghemulet, S., Pana, A., Ardelean, M., Corbu, M., Calcan, A., Conley, S. A., Smith, M. L., and Röckmann, T.: Airborne in-situ quantification of methane emissions from oil and gas production in Romania, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2135, 2024.
- Mahfouz, M. M. K., Skok, G., Sciare, J., Pikridas, M., Alfarra, M. R., Moosakutty, S., Alfoldy, B., Ivančič, M., Rigler, M., Gregorič, A., Podlipec, R., Lohmann, S., Hlawacek, G., Heller, R., Tutsak, E., and Močnik, G.: Contribution of black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula, Atmospheric Environment, 324, 120427, https://doi.org/10.1016/j.atmosenv.2024.120427, 2024.
- Mahowald, N. M., Li, L., Vira, J., Prank, M., Hamilton, D. S., Matsui, H., Miller, R. L., Lu, L., Akyuz, E., Meidan, D., Hess, P. G., Lihavainen, H., Wiedinmyer, C., Hand, J., Alaimo, M. G., Alves, C., Alastuey, A., Artaxo, P., Barreto, A., Barraza, F., Becagli, S., Calzolai, G., Chellam, S., Chen, Y., Chuang, P., Cohen, D. D., Colombi, C., Diapouli, E., Dongarra, G., Eleftheriadis, K., Engelbrecht, J., Galy-Lacaux, C., Gaston, C., Gomez, D., González Ramos, Y., Harrison, R. M., Heyes, C., Herut, B., Hopke, P., Hüglin, C., Kanakidou, M., Kertesz, Z., Klimont, Z., Kyllönen, K., Lambert, F., Liu, X., Losno, R., Lucarelli, F., Maenhaut, W., Marticorena, B., Martin, R. V., Mihalopoulos, N., Morera-Gomez, Y., Paytan, A., Prospero, J., Rodríguez, S., Smichowski, P., Varrica, D., Walsh, B., Weagle, C., and Zhao, X.: AERO-MAP: A data compilation and modelling approach to understand spatial variability in fine and coarse mode aerosol composition, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1617, 2024.
- Mahura, A., Baklanov, A., Makkonen, R., Boy, M., Petäjä, T., Lappalainen, H. K., Nuterman, R.; Kerminen, V.-M.; Arnold, S. R.; Jochum, M.; Shvidenko, A.; Esau, I.; Sofiev, M.; Stohl, A.; Aalto, T.; Bai, J.; Chen, C.; Cheng, Y.; Drofa, O.; Huang, M.; Järvi, L.; Kokkola, H.; Kouznetsov, R.; Li, T.; Malguzzi, P.; Monks, S.; Poulsen, M. B.; Noe, S. M.; Palamarchuk, Y.; Foreback, B.; Clusius, P.; Rasmussen, T. A. S.; She, J.; Sørensen, J. H.; Spracklen, D.; Su, H.; Tonttila, J.; Wang, S.; Wang, J.; Wolf-Grosse, T.; Yu, Y.; Zhang, Q.; Zhang, W.; Zhang, W.; Zheng, X.; Li, S.; Li, Y.; Zhou, P.; Kulmala, M.: Towards seamless environmental prediction development of Pan-Eurasian Experiment (PEEX) modelling platform. Big Earth Data, 8(2), 189–230. https://doi.org/10.1080/20964471.2024.2325019, 2024.
- Maison, A., Lugon, L., Park, S.-J., Baudic, A., Cantrell, C., Couvidat, F., D'Anna, B., Di Biagio, C., Gratien, A., Gros, V., Kalalian, C., Kammer, J., Michoud, V., Petit, J.-E., Shahin, M., Simon, L., Valari, M., Vigneron, J., Tuzet, A. & Sartelet, K. (2024). Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling. (Vol. 24, pp. 6011-6046). Copernicus GmbH. https://doi.org/10.5194/acp-24-6011-2024
- Mandija F, Keckhut P, Alraddawi D, Khaykin S, Sarkissian A. Climatology of Cirrus Clouds over Observatory of Haute-Provence (France) Using Multivariate Analyses on Lidar Profiles. Atmosphere. 2024; 15(10):1261. https://doi.org/10.3390/atmos15101261

- Mardoñez-Balderrama, V., Močnik, G., Pandolfi, M., Modini, R. L., Velarde, F., Renzi, L., Marinoni, A., Jaffrezo, J. L., Moreno R, I., Aliaga, D., Bianchi, F., Mohr, C., Gysel-Beer, M., Ginot, P., Krejci, R., Wiedensohler, A., Uzu, G., Andrade, M., & Laj, P. (2024). Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources. Atmos. Chem. Phys., 24, 12055-12077. https://doi.org/10.5194/acp-24-12055-2024
- Marinou, E., Amiridis, V., Paschou, P., Tsekeri, A., Tsikoudi, I., Voudouri, K.A., ... & Baars, H., 2024: Across Mediterranean Experiment for the Cal/Val of the Earthcare Mission. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS53475.2024.10642456
- Marinou, E., Baars, H., Mona, L., O'Connor, E., Rusli, S., Koopman, R., ... & Nicolae, D., 2024: Actris, Earlinet, and Cloudnet Cal/Val Contribution to Earthcare Mission. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS53475.2024.10642457
- Marke, T., Löhnert, U., Tukiainen, S., Siipola, T., and Pospichal, B.: MWRpy: A Python package for processing microwave radiometer data. Journal of Open Source Software, 9, 6733, https://doi.org/10.21105/joss.06733, 2024.
- Marmureanu, L., Marin, C.A., Vasilescu, J., Petit, J.-E., Amodeo, T., Truong, F., ... & Freney, E., 2024: Evaluation of aerosol chemical speciation monitor response to different mixtures of organic and inorganic aerosols. Aerosol Science and Technology, advance online publication, 1– 18.https://doi.org/10.1080/02786826.2024.2412999
- Martinez-Pérez, S., Nicolás, J.F., Galindo, N., Fernández-Sanchez, F.J., Soriano-Gomis, V., Varea, M., 2024.
 Influence of inputs from foreign source regions on daily profiles of Olea pollen at an urban site in the southeast of the Iberian Peninsula. Atmospheric Environment 331, 120578.
- Mayer, L., Degrendele, C., Šenk, P., Kohoutek, J., Přibylová, P., Kukučka, P., Melymuk, L., Durand, A., Ravier, S., Alastuey, A., Baker, A. R., Baltensperger, U., Baumann-Stanzer, K., Biermann, T., Bohlin-Nizzetto, P., Ceburnis, D., Conil, S., Couret, C., Degórska, A., Diapouli, E., Eckhardt, S., Eleftheriadis, K., Forster, G. L., Freier, K., Gheusi, F., Gini, M. I., Hellén, H., Henne, S., Herrmann, H., Šmejkalová, A. H., Hõrrak, U., Hüglin, C., Junninen, H., Kristensson, A., Langrene, L., Levula, J., Lothon, M., Ludewig, E., Makkonen, U., Matejovičová, J., Mihalopoulos, N., Mináriková, V., Moche, W., Noe, S. M., Pérez, N., Petäjä, T., Pont, V., Poulain, L., Quivet, E., Ratz, G., Rehm, T., Reimann, S., Simmons, I., Sonke, J. E., Sorribas, M., Spoor, R., Swart, D. P. J., Vasilatou, V., Wortham, H., Yela, M., Zarmpas, P., Zellweger Fäsi, C., Tørseth, K., Laj, P., Klánová, J., and Lammel, G.: Widespread pesticide distribution in the European atmosphere questions their degradability in air, Environ. Sci. Technol., 58, 7, 3342-3352, https://doi.org/10.1021/acs.est.3c08488, 2024.
- Mbengue, S., Vodička, P., Komínková, K., Schwarz, J., Zíková, N., Lhotka, R., et al. Night-time evolution of atmospheric aerosols from the largest open biomass burning "experiment" in Central Europe. Submitted for publication in Environmental Science and Pollution Research. ESPR-S-24-18319. 2024.

- Miri, R., Pujol, O., Hu, Q., Goloub, P., Veselovskii, I., Podvin, T., and Ducos, F.: Innovative aerosol hygroscopic growth study from Mie-Raman-Fluorescence lidar and Microwave Radiometer synergy, Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-17-3367-2024, 2024
- Mohr, C., & Gysel-Beer, M. (2024). The chemistry of atmospheric aerosols: at the nexus between climate, energy, and air quality. Chimia, 78, 728-733. https://doi.org/10.2533/chimia.2024.728
- Molepo, K. M., Bieser, J., Koenig, A. M., Hedgecock, I. M., Ebinghaus, R., Dommergue, A., Magand, O., Angot, H., Travnikov, O., Martin, L., Labuschagne, C., Read, K., and Bertrand, Y.: Constraining elemental mercury air–sea exchange using long-term ground-based observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3722, 2024.
- Molero, F., Salvador, P., & Pujadas, M. (2024), Impact of Saharan Dust Intrusions on Atmospheric Boundary Layer Height over Madrid. Atmosphere, 15(12), 1451. https://doi.org/10.3390/atmos15121451 (CF: 2E036)
- Moreno, C. I., Krejci, R., Jaffrezo, J.-L., Uzu, G., Alastuey, A., Andrade, M. F., Mardóñez, V., Koenig, A. M., Aliaga, D., Mohr, C., Ticona, L., Velarde, F., Blacutt, L., Forno, R., Whiteman, D. N., Wiedensohler, A., Ginot, P., and Laj, P.: Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes, Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, 2024.
- Mukherjee A., Hartikainen, A., Joutsensaari, J., Basnet, S., Mesceriakovas, A., Ihalainen, M., Yli-Pirilä, P., Leskinen, J., Somero, M., Louhisalmi, J., Fang, Z., Kalberer, M., Rudich, Y., Tissari, J., Czech, H., Zimmermann, R., and Sippula, O. Black carbon and particle lung-deposited surface area in residential wood combustion emissions: effects of an electrostatic precipitator and photochemical ageing, Science of the Total Environment, 952, 175840, doi:10.1016/j.scitotenv.2024.175840, 2024.
- Müller, J.-F., Stavrakou, T., Oomen, G.-M., Opacka, B., De Smedt, I., Guenther, A., Vigouroux, C., Langerock, B., Aquino, C. A. B., Grutter, M., Hannigan, J., Hase, F., Kivi, R., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Röhling, A., Stremme, W., Strong, K., Sussmann, R., Té, Y., and Fried, A.: Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates, Atmos. Chem. Phys., 24, 2207-2237, https://doi.org/10.5194/acp-24-2207-2024, 2024.
- Navarro-Barboza, H., M. Pandolfi, M. Guevara, S. Enciso, C. Tena, M. Via, Jesus Yus-Díez, C. Reche, N. Pérez, A. Alastuey, X. Querol and O. Jorba (2024). Uncertainties in source allocation of carbonaceous aerosols in a Mediterranean region. Environment International, 183, 108252, ISSN 0160-4120, doi:10.1016/j.envint.2023.108252.
- Nuñez López, L., Amato, P., and Ervens, B.: Bacteria in clouds biodegrade atmospheric formic and acetic acids, Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, 2024.
- Nürnberg, P., Rettinger, M., and Sussmann, R.: Solar FTIR measurements of NOx vertical distributions – Part 1: First observational evidence of a seasonal variation in the diurnal increasing rates of stratospheric NO2 and NO, Atmos. Chem. Phys., 24, 3743-3757, https://doi.org/10.5194/acp-24-3743-2024, 2024a.

- Nürnberg, P., Strode, S. A., and Sussmann, R.: Solar FTIR measurements of NOx vertical distributions Part 2: Experiment-based scaling factors describing the daytime variation in stratospheric NOx, Atmos. Chem. Phys., 24, 10001-10012, https://doi.org/10.5194/acp-24-10001-2024, 2024b.
- Oliveira, K., Guevara, M., Jorba, O., Petetin, H., Bowdalo, D., Tena, C., Montané Pinto, G., López, F., and Pérez García-Pando, C.: On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis, Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024, 2024.
- Pace, G., di Sarra, A., Cali Quaglia, F., Ciardini, V., Di lorio, T., laccarino, A., Meloni, D., Muscari, G., and Scarchilli, C.: Verification of parameterizations for clear sky downwelling longwave irradiance in the Arctic, Atmos. Meas. Tech., 17, 1617–1632, https://doi.org/10.5194/amt-17-1617-2024, 2024.
- Pailler, L., Deguillaume, L., Lavanant, H., Schmitz, I., Hubert, M., Nicol, E., Ribeiro, M., Pichon, J.-M., Vaïtilingom, M., Dominutti, P., Burnet, F., Tulet, P., Leriche, M., and Bianco, A., 2024. Molecular composition of clouds: a comparison between samples collected at tropical (Réunion Island, France) and midnorth (Puy de Dôme, France) latitudes, Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024
- Papanikolaou, C.-A., Papayannis, A., Gidarakou, M., Abdullaev, S.F., Ajtai, N., Baars, H., Balis, D., Bortoli, D., Bravo-Aranda, J.A., Collaud-Coen, M., De Rosa, B., Dionisi, D., Eleftheratos, K., Engelmann, R., Floutsi, A., Abril-Gago, J., Goloub, P., Giuliano, G., Gumà-Claramunt, P., Hofer, J., Hu, Q., Komppula, M., Marinou, E., Martucci, G., Mattis, I., Michailidis, K., Muñoz-Porcar, C., Mylonaki, M., Mytilinaios, M., Nicolae, D., Rodríguez-Gómez, A., Salgueiro, V., Shang, X., Stachlewska, I., Ştefănie, H., Szczepanik, D., Trickl, T., Vogelmann, H. and Voudouri, K.: Large-scale network-based observations of a Saharan dust event across the European continent in Spring 2022, Remote Sens., 16, 3350, https://doi.org/10.3390/rs16173350, 2024.
- Papanikolaou, C-A., Papayannis, A., Gidarakou, M., Abdullaev, S. F., Ajtai, N., Baars, H., Balis, D., Bortoli, D., Bravo-Aranda, J. A., Collaud-Coen, M., De Rosa, B., Dionisi, D., Eleftheratos, K., Engelmann, R., Floutsi, A. A., Abril-Gago, J., Goloub, P., Giuliano, G., Gumà-Claramunt, P., Hofer, J., Hu, Q., Komppula, M., Marinou, E., Martucci, G., Mattis, I., Michailidis, K., Muñoz-Porcar, C., Mylonaki, M., Mytilinaios, M., Nicolae, D., Rodríguez-Gómez, A., Salgueiro, V., Shang, X., Stachlewska, I. S., Stefănie H. I., Szczepanik, D. M., Trickl, T., Vogelmann, H., and Voudouri, K. A.: Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022, Remote Sens., 16, 3350, https://doi.org/10.3390/rs16173350, 2024
- Papetta, A., Marenco, F., Kezoudi, M., Mamouri, R.-E., Nisantzi, A., Baars, H., Popovici, I. E., Goloub, P., Victori, S., and Sciare, J.: Lidar depolarization characterization using a reference system, Atmos. Meas. Tech., 17, 1721– 1738, https://doi.org/10.5194/amt-17-1721-2024, 2024.
- Patoulias, D., Florou, K., Pandis, S., and Nenes, A.: New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale, Geoph. Res. Letters, https://doi.org/10.1029/2023GL106182, 2024

- Pereira Freitas, G., Kopec, B., Adachi, K., Krejci, R., Heslin-Rees, D., Yttri, K. E., Hubbard, A., Welker, J. M., and Zieger, P.: Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals, Atmos. Chem. Phys., https://doi.org/10.5194/acp-24-5479-2024, 2024.
- Peron, A., Graus, M., Striednig, M., Lamprecht, C., Wohlfahrt, G., & Karl, T. (2024). Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area. Atmospheric Chemistry and Physics, 24(12), 7063-7083,
 - https://acp.copernicus.org/articles/24/7063/2024/
- Philibert, A., Lothon, M., Amestoy, J., Meslin, P.-Y., Derrien, S., Bezombes, Y., Campistron, B., Lohou, F., Vial, A., Canut-Rocafort, G., Reuder, J., and Brooke, J. K.: CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data, Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, 2024
- Pino-Carmona, M., Ruiz-Arias, J. A., Fernández-Carvelo, S., Bravo-Aranda, J. A., & Alados-Arboledas, L. (2024). Intercomparison of WRF-chem aerosol schemes during a dry Saharan dust outbreak in Southern Iberian Peninsula. Atmospheric Environment, 339, 120872. doi: 10.1016/j.atmosenv.2024.120872
- Piticar, A., Andrei, S., & Tudor, A., 2024: Spatiotemporal Variability of Convective Events in the Warm Season in Romania. Sustainability, 16(8), 3243. https://doi.org/10.3390/su16083243
- Radenz, M., Engelmann, R., Henning, S., Schmithüsen, H., Baars, H., Frey, M. M., Weller, R., Bühl, J., Jimenez, C., Roschke, J., Muser, L. O., Wullenweber, N., Zeppenfeld, S., Griesche, H., Wandinger, U., and Seifert, P.: Groundbased remote sensing of aerosol, clouds, dynamics, and precipitation in Antarctica: First results from the 1-year COALA Campaign at Neumayer Station III in 2023, Bull. Amer. Meteor. Soc., 105, E1438-E1457, https://doi:10.1175/BAMS-D-22-0285.1, 2024.
- Rejano, F., Casans, A., Via, M., Casquero-Vera, J. A., Castillo, S., Lyamani, H., ... & Titos, G. (2024). CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity. Atmospheric Chemistry and Physics, 24(24), 13865-13888. doi: 10.5194/acp-24-13865-2024
- Rivonirina, J. M., Portafaix, T., Rakotoniaina, S., Morel, B., Tang, C., Lamy, K., ... & Bencherif, H. (2024). Cloudiness retrieved from All-Sky camera and MSG satellite over Reunion Island and Antananarivo Madagascar. EGUsphere, 2024, 1-23.
 - https://doi.org/10.5194/egusphere-2024-1827
- Rocco M, Brugere E, Magand O, Borbon A, Colomb A, Bouvier L, Baray J-L, Duflot V, Ribeiro M, Picard D, Metzger J-M, Stamenoff P, Benoit Y and Ah-Peng C (2024), VELVET: an enclosure vegetation system to measure BVOC emission fingerprints in temperate and tropical climates. Front. Environ. Sci. 12:1372931. doi: 10.3389/fenvs.2024.1372931
- Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, et al., 2024. Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion). Atmospheric Chemistry and Physics, 24, pp.3785 - 3812. <10.5194/acp-24-3785-2024>. <hal-04576127>

- Rossi, F., C. Duchaine, R. Tignat-Perrier, M. Joly, C. Larose, A. Dommergue, N. Turgeon, M. Veillette, K. Sellegri, J.-L. Baray, P. Amato, Temporal variations of antimicrobial resistance genes in aerosols: A one-year monitoring at the puy de Dôme summit (Central France), Science of The Total Environment, 2024, 169567.
- https://doi.org/10.1016/j.scitotenv.2023.169567.
 Rovira, J., Savadkoohi, M., Chen, G. I., Močnik, G., Aas, W., Alados-Arboledas, L., Artiñano, B., Aurela, M., Backman, J., Banerji, S., Beddows, D., Brem, B., Chazeau, B., Coen, M. C., Colombi, C., Conil, S., Costabile, F., Coz, E., de Brito, J. F., Eleftheriadis, K., ... Pandolfi, M.: A European aerosol phenomenology 9: Light absorption properties of carbonaceous aerosol particles across surface Europe, Environment international, 195, 109185, https://doi.org/10.1016/j.envint.2024.109185, 2024.
- Rowell, A., Brean, J., Beddows, D. C. S., Petäjä, T., Vörösmarty, M., Salma, I., Niemi, J. V., Manninen, H. E., van Pinxteren, D., Tuch, T., Weinhold, K., Shi, Z., and Harrison, R. M.: Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns, Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, 2024.
- Ruiz-Páez R., López-Bueno J.A., Padrón-Monedero A., Navas M.A., Salvador P., Linares C., Díaz J. (2024), Shortterm effects of fine particulate matter from biomass combustion and Saharan dust intrusions on emergency hospital admissions due to mental and behavioural disorders, anxiety and depression in Spain. Science of the Total Environment, 946:174316; https://doi.org /10.1016/j.scitotenv.2024.174316.
- Sabic, S., Bell, D., Gasic, B., Schmid, K., Peter, T., & Marcolli, C. (2024). Exposure assessment during paint spraying and drying using PTR-ToF-MS. Frontiers in Public Health, 11, 1327187 (1327114 pp.). https://doi.org/10.3389/fpubh.2023.1327187
- Salvador P., Pey J., Pérez N., Alastuey A., Querol X., Artíñano, B., (2024), Estimating the probability of occurrence of African dust outbreaks over regions of the western Mediterranean basin from thermodynamic atmospheric parameters. Science of the Total Environment;
- https://doi.org/10.1016/j.scitotenv.2024.171307 Savadkoohi, M., Pandolfi, M., Favez, O., Putaud, J.-P., Eleftheriadis, K., Fiebig, M., Hopke, PhilipK.., Laj, P., Wiedensohler, A., Alados-Arboledas, L., Bastian, S., Chazeau, B., María, Á. C., Colombi, C., Costabile, F., Green, D. C.., Hueglin, C., Liakakou, E., Luoma, K., Listrani, S., Mihalopoulos, N., Marchand, N., Mov cnik, G., Niemi, JarkkoV.., Ondrácek, J., Petit, J.-E., Rattigan, O. V., Reche, C., Timonen, H., Titos, G., Tremper, A. H., Vratolis, S., Vodicka, P., Funes, E. Y., Zíková, N., Harrison, R. M., Petäjä, T., Alastuey, A. and Querol, X.: Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations, Environment International Vol. 185 https://doi.org/10.1016/j.envint.2024.108553, 2024.
- Scapucci, L., Shekhar, A., Aranda-Barranco, S., Bolshakova, A., Hörtnagl, L., Gharun, M., & Buchmann, N. (2024). Compound soil and atmospheric drought (CSAD) events and CO 2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers. Biogeosciences, 21(15), 3571-3592. doi: 10.5194/bg-21-3571-2024

- Schafer, Britta, Robert Oscar David, Paraskevi Georgakaki, Julie Therese Pasquier, Georgia Sotiropoulou, and Trude Storelvmo: Simulations of Primary and Secondary Ice Production during an Arctic Mixed-Phase Cloud Case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) Campaign, Atmos. Chem. Phys, https://doi.org/10.5194/acp-24-7179-2024, 2024.
- Shang, X., Lipponen, A., Filioglou, M., Sundström, A.-M., Parrington, M., Buchard, V., Darmenov, A. S., Welton, E. J., Marinou, E., Amiridis, V., Sicard, M., Rodríguez-Gómez, A., Komppula, M., and Mielonen, T.: Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019, Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, 2024.
- Singh, M., Kondo, Y., Ohata, S., et al.: Mass absorption cross section of black carbon for Aethalometer in the Arctic, Aerosol Sci. Techn., https://doi.org/10.1080/02786826.2024.2316173, 2024
- Sotiropoulou, G., Lewinschal, A., Georgakaki, P., Phillips, V. T., Patade, S., Ekman, A. M., & Nenes, A. (2024).
 Sensitivity of Arctic clouds to ice microphysical processes in the NorESM2 climate model. Journal of Climate, 37(16), 4275-4290, https://doi.org/10.1175/JCLI-D-22-0458.1
- Stachlewska I.S., Georgoussis G., Freudenthaler V., Hafiz A., Poczta P., Louridas A., Wang D., Janicka Ł., Siomos N., Karasewicz M., Fortuna R., Kokkalis P., Amiridis V., Byčenkienė S., Drzeniecka-Osiadacz A., Belegante L., Nicolae D., Tzeremes G., Ribes Pleguezuelo P. & Schüttemeyer D., 2024, EMORAL—Mobile Mie-Raman Lidar with Fluorescence, Polarization and Water Vapor Observational Capabilities for Satellite Cal/Val Field Campaigns, Springer Aerospace Technology, vol. Volume Part F2592, 239-251, https://doi.org/10.1007/978-3-031-53618-2 21
- Stachlewska, I. S., Szczepanik, D.M., Janicka, Ł., 2024, Wpływ suszy na aerozole atmosferyczne, "Susza – zjawisko, konteksty, ramy prawne", Wydawnictwa Uniwersytetu Warszawskiego, 175-188, 10.31338/uw.9788323565765.pp.175-188
- Steiner, M., Peters, W., Luijkx, I., Henne, S., Chen, H., Hammer, S., and Brunner, D.: European CH4 inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell, Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024, 2024.
- Stichaner, M., Karl, T., Jensen, N. R., Striednig, M., Graus, M., Lamprecht, C., & Jud, W. (2024). Urban sources of methane characterised by long-term eddy covariance observations in central Europe. Atmospheric Environment, 336, 120743, https://doi.org/10.1016/j.atmosenv.2024.120743.
- Suchánková, L., Mbengue, S., Zíková, N., Holubová Šmejkalová, A., Prokeš, R., Holoubek, I., And Ždímal, V. A seven-year-based characterization of aerosol light scattering properties at a rural Central European site. Atmospheric Environment. 2024, vol. 319, article no. 120292.
- Sulo, J., Enroth, J., Pajunoja, A., Vanhanen, J., Lehtipalo, K., Petäjä, T., and Kulmala, M.: Pushing nano-aerosol measurements towards a new decade – technical note on the Airmodus particle size magnifier 2.0, Aerosol Research, 2, 13–20, https://doi.org/10.5194/ar-2-13-2024, 2024.

- Sun, J., Hermann, M., Weinhold, K., Merkel, M., Birmili, W., Yang, Y., Tuch, T., Flentje, H., Briel, B., Ries, L., Couret, C., Elsasser, M., Sohmer, R., Wirtz, K., Meinhardt, F., Schütze, M., Bath, O., Hellack, B., Kerminen, V.-M., Kulmala, M., Ma, N., and Wiedensohler, A.: Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing results from 5-year observations in central Europe, Atmos. Chem. Phys., 24, 10667-10687, https://doi.org/10.5194/acp-24-10667-2024, 2024.
- Surdu, M., Top, J., Yang, B., Zhang, J., Slowik, J. G., Prévôt, A. S. H., Wang, D. S., el Haddad, I., & Bell, D. M. (2024). Real-time identification of aerosol-phase carboxylic acid production using extractive electrospray ionization mass spectrometry. Environ. Sci. Technol., 58, 8857-8866. https://doi.org/10.1021/acs.est.4c01605
- Svenhag, C., Sporre, M. K., Olenius, T., Yazgi, D.,
 Blichner, S. M., Nieradzik, L. P., and Roldin, P.:
 Implementing detailed nucleation predictions in the
 Earth system model EC-Earth3.3.4: sulfuric acidammonia nucleation, Geosci. Model Dev., 17, 4923–
 4942, https://doi.org/10.5194/gmd-17-4923-2024, 2024.
- Teisseire, A., Seifert, P., Myagkov, A., Bühl, J., and Radenz, M.: Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar, Atmos. Meas. Tech., 17, 999– 1016, https://doi.org/10.5194/amt-17-999-2024, 2024.
- Thomas, G., Martinet, P., Brousseau, P., Chambon, P., Georgis, J.-F., Hervo, M., Huet, T., Löhnert, U., Orlandi, E., and Unger, V.: Assimilation of ground-based microwave radiometer temperature observations into a convective-scale NWP model for fog forecast improvement, Q. J. R. Meteorol. Soc., 1-26, https://doi.org/10.1002/qj.4893, 2024.
- Thomsen, D.; Iversen, E. M.; Skonager, J. T.; Luo, Y. Y.; Li,
 L. J.; Roldin, P.; Priestley, M.; Pedersen, H. B.; Hallquist,
 M.; Ehn, M.; Bilde, M.; Glasius, M., The effect of
 temperature and relative humidity on secondary
 organic aerosol formation from ozonolysis of Δ3-carene.
 Environmental Science-Atmospheres 2024, 4, (1), 88-103
- Tinorua, S., Denjean, C., Nabat, P., Bourrianne, T., Pont, V., Gheusi, F., and Leclerc, E.: Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees., Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, 2024
- Tinorua, S., Denjean, C., Nabat, P., Pont, V., Arnaud, M., Bourrianne, T., Dias Alves, M., and Gardrat, E.: A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe, Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, 2024
- Unal, C. and van den Brule, Y.: Exploring Millimeter-Wavelength Radar Capabilities for Raindrop Size Distribution Retrieval: Estimating Mass-Weighted Mean Diameter from the Differential Backscatter Phase, Journal of atmospheric and oceanic technology, 41, 583–603, 2024.
- Valenzuela, A., Bazo, E., Rica, R. A., Alados-Arboledas, L., & Olmo-Reyes, F. J. (2024). Electrodynamic singleparticle trap integrated into double-cavity ring-down spectroscopy for light extinction. Journal of Aerosol Science, 175, 106292. doi: 10.1016/j.jaerosci.2023.106292

- Valenzuela, A., García-Izquierdo, F. J., Sánchez-Jiménez, G., Bazo, E., Guerrero-Rascado, J. L., Cariñanos, P., ... & Olmo-Reyes, F. J. (2024). Optical properties from extinction cross-section of single pollen particles under laboratory-controlled relative humidity. Journal of Aerosol Science, 177, 106311. doi: 10.1016/j.jaerosci.2023.106311
- van Pinxteren, D., Engelhardt, V., Mothes, F., Poulain, L., Fomba, K. W., Spindler, G., Cuesta-Mosquera, A., Tuch, T., Müller, T., Wiedensohler, A., Löschau, G., Bastian, S., and Herrmann, H.: Residential wood combustion in Germany: A twin-site study of local village contributions to particulate pollutants and their potential health effects, ACS Environ. Au, 4, 12-30, doi:10.1021/acsenvironau.3c00035, 2024.
- Van Roozendael, M., Hendrick, F., Friedrich, M. M., Fayt, C., Bais, A., Beirle, S., Bösch, T., Comas, M. N., Friess, U., Karagkiozidis, D., Kreher, K., Merlaud, A., Pinardi, G., Piters, A., Prados-Roman, C., Puentedura, O., Reischmann, L., Richter, A., Tirpitz, J.-L., Wagner, T., Yela, M., Ziegler, S.; Fiducial Reference Measurements for Air Quality Monitoring Using Ground-Based MAX-DOAS Instruments (FRM4DOAS). Remote Sensing 2024, Vol. 16, Page 4523, 16(23), 4523, https://doi.org/10.3390/RS16234523, 2024.
- Velazquez-Garcia A., J. Brito, S. Crumeyrolle, I. Chiapello, V. Riffault, Assessment of light-absorbing carbonaceous aerosol origins and properties at the ATOLL site in Northern France, Aerosol Research, https://doi.org/10.5194/ar-2024-5
- Veludo, A. F., Roeoesli, M., Dalvie, M. A., Fišerová, S. P., Prokeš, R., Přibylová, P., et al. Child exposure to organophosphate and pyrethroid insecticides measured in urine, wristbands, and household dust and its implications for child health in South Africa: A panel study. Environmental Epidemiology. 2024, vol. 8, no. 1, article no. e282. DOI: 10.1097/EE9.00000000000000282.
- Veselovskii, I., Barchunov, B., Hu, Q., Goloub, P., Podvin, T., Korenskii, M., Dubois, G., Boissiere, W., and Kasianik, N.: Retrieval and analysis of the composition of an aerosol mixture through Mie-Raman-Fluorescence lidar observations, Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-17-4137-2024, 2024.
- Veselovskii, I., Hu, Q., Goloub, P., Podvin, T., Boissiere, W., Korenskiy, M., Kasianik, N., Khaykyn, S., and Miri, R.: Derivation of aerosol fluorescence and water vapor Raman depolarization ratios from lidar measurements, Atmos. Meas. Tech. 17, 1023–1036, 2024, https://doi.org/10.5194/amt-17-1023-2024
- Veselovskii, I., Korenskiy, M., Kasianik, N., Barchunov, B., Hu, Q., Goloub, P., and Podvin, T.: Fluorescence properties of long-range transported smoke: Insights from five-channel lidar observations over Moscow during the 2023 wildfire season, https://doi.org/10.5194/egusphere-2024-2874, 2024
- Vimeux, F., Risi, C., Barthe, C., Francois, S., Cauquoin, A., Jossoud, O., Metzger, J.M., Cattani, O., Minster, B., and Werner, M., 2024. Is the Isotopic Composition of Precipitation a Robust Indicator for Reconstructions of Past Tropical Cyclones Frequency? A Case Study on Réunion Island From Rain and Water Vapor Isotopic Observations. Journal of Geophysical Research: Atmospheres, 2024, 129 (3), <10.1029/2023jd039794>. <hackle here</p>

- Vitali, B., Bettineschi, M., Cholakian, A., Zardi, D., Bianchi, F., Sinclair, V. A., ... & Ciarelli, G. (2024). Analysis of chemical and transport processes of biogenic aerosols over the northern Apennines: insights from the WRF-CHIMERE model. Environmental Science: Atmospheres, 4(9), 967-987. https://doi.org/10.1039/D4EA00040D
- Vojta, Š., Melymuk, L., Prokeš, R., And Klánová, J.
 Assessment of the impact of sampler housing on indoor passive air sampler measurements of SVOCs. Journal of Environmental Exposure Assessment. 2024, vol. 3. DOI: 10.20517/jeea.2023.39.
- Vural, J., Merker, C., Löffler, M., et al.: Improving the representation of the atmospheric boundary layer by direct assimilation of ground-based microwave radiometer observations, Q. J. R. Meteorol. Soc., 150, 1012-1028, https://doi.org/10.1002/qj.4634, 2024.
- Wang, T., Li, K., Bell, D. M., Zhang, J., Cui, T., Surdu, M., Baltensperger, U., Slowik, J. G., Lamkaddam, H., El Haddad, I., & Prevot, A. S. H. (2024). Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions. npj Clim. Atmos. Sci., 7, 149. https://doi.org/10.1038/s41612-024-00682-6
- Wang, W., Hocke, K., Nania, L., Cazorla, A., Titos, G., Matthey, R., ... & Navas-Guzmán, F. (2024). Interrelations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA). Atmospheric Chemistry and Physics, 24(2), 1571-1585. doi: 10.5194/acp-24-1571-2024
- Wieser, F., Sander, R., Cho, C., Fuchs, H., Hohaus, T., Novelli, A., Tillmann, R., and Taraborrelli, D.: Development of a multiphase chemical mechanism to improve secondary organic aerosol formation in CAABA/MECCA (version 4.7.0), Geosci. Model Dev., 17, 4311-4330, https://doi.org/10.5194/gmd-17-4311-2024, 2024.
- Wijnands, J. S., Apituley, A., Gouveia, D. A., and Noteboom, J. W.: Deep-Pathfinder: a boundary layer height detection algorithm based on image segmentation, Atmos. Meas. Tech., 17, 3029–3045, https://doi.org/10.5194/amt-17-3029-2024, 2024.
- Williams, A. S., Dedrick, J. L., Russell, L. M., Tornow, F., Silber, I., Fridlind, A. M., Swanson, B., DeMott, P. J., Zieger, P., and Krejci, R.: Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic, Atmos. Chem. Phys., https://doi.org/10.5194/acp-24-11791-2024, 2024.
- Wollesen de Jonge, R., Xavier C., Olenjus, T., et al.: Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei, Environ. Sci. Technol., doi.org/10.1021/acs.est.4c01891, 2024.
- Wu, J., Faccinetto, A., Batut, S., Cazaunau, M., Pangui, E., Nuns, N., ... & Petitprez, D. (2024). On the correlation between hygroscopic properties and chemical composition of cloud condensation nuclei obtained from the chemical aging of soot particles with O3 and SO2. Science of the Total Environment, 906, 167745
- Xinyue S., Minghuai W., Xinyi D., et al.: Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs), Atmos. Chem. Phys., https://doi.org/10.5194/acp-24-11365-2024, 2024.

- Xue, C.; Krysztofiak, G.; Ren, Y.; Cai, M.; Mercier, P.; Fur, F. L.; Robin, C.; Grosselin, B.; Daële, V.; McGillen, M. R.; Mu, Y.; Catoire, V.; Mellouki, A. A Study on Wildfire Impacts on Greenhouse Gas Emissions and Regional Air Quality in South of Orléans, France. Journal of Environmental Sciences 2024, 135, 521–533. https://doi.org/10.1016/j.jes.2022.08.032
- Yttri, K. E., Bäcklund, A., Conen, F., Eckhardt, S., Evangeliou, N., Fiebig, M., Kasper-Giebl, A., Gold, A., Gundersen, H., Myhre, C. L., Platt, S. M., Simpson, D., Surratt, J. D., Szidat, S., Rauber, M., Tørseth, K., Ytre-Eide, M. A., Zhang, Z., and Aas, W.: Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020), Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, 2024.

Exploring the Atmosphere

www.actris.eu